dc.creator | Zhang, Yu-Hang | |
dc.creator | Li, Zhandong | |
dc.creator | Zeng, Tao | |
dc.creator | Chen, Lei | |
dc.creator | Li, Hao | |
dc.creator | Gamarra, Margarita | |
dc.creator | MansourI, Romany F. | |
dc.creator | Escorcia-Gutierrez, Jose | |
dc.creator | Huang, Tao | |
dc.creator | Cai, Yu-Dong | |
dc.date | 2021-05-20T18:12:42Z | |
dc.date | 2021-05-20T18:12:42Z | |
dc.date | 2021-04-22 | |
dc.date.accessioned | 2023-10-03T20:00:47Z | |
dc.date.available | 2023-10-03T20:00:47Z | |
dc.identifier | 1932-6203 | |
dc.identifier | https://hdl.handle.net/11323/8267 | |
dc.identifier | https://doi.org/10.1371/journal.pone.0250032 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9173831 | |
dc.description | Pregnancy is a complicated and long procedure during one or more offspring development inside a woman. A short period of oxygen shortage after birth is quite normal for most babies and does not threaten their health. However, if babies have to suffer from a long period of oxygen shortage, then this condition is an indication of pathological fetal intolerance, which probably causes their death. The identification of the pathological fetal intolerance from the physical oxygen shortage is one of the important clinical problems in obstetrics for a long time. The clinical syndromes typically manifest five symptoms that indicate that the baby may suffer from fetal intolerance. At present, liquid biopsy combined with high-throughput sequencing or mass spectrum techniques provides a quick approach to detect real-time alteration in the peripheral blood at multiple levels with the rapid development of molecule sequencing technologies. Gene methylation is functionally correlated with gene expression; thus, the combination of gene methylation and expression information would help in screening out the key regulators for the pathogenesis of fetal intolerance. We combined gene methylation and expression features together and screened out the optimal features, including gene expression or methylation signatures, for fetal intolerance prediction for the first time. In addition, we applied various computational methods to construct a comprehensive computational pipeline to identify the potential biomarkers for fetal intolerance dependent on the liquid biopsy samples. We set up qualitative and quantitative computational models for the prediction for fetal intolerance during pregnancy. Moreover, we provided a new prospective for the detailed pathological mechanism of fetal intolerance. This work can provide a solid foundation for further experimental research and contribute to the application of liquid biopsy in antenatal care. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | 1. Bondas T, Eriksson K (2001) Women’s lived experiences of pregnancy: A tapestry of joy and suffering.
Qualitative Health Research 11: 824–840. https://doi.org/10.1177/104973201129119415 PMID:
11710080 | |
dc.relation | 2. Macklin R (2010) Enrolling pregnant women in biomedical research. The Lancet 375: 632–633. https://
doi.org/10.1016/s0140-6736(10)60257-7 PMID: 20198725 | |
dc.relation | 3. Yap S-C, Drenthen W, Pieper PG, Moons P, Mulder BJ, et al. (2008) Risk of complications during pregnancy in women with congenital aortic stenosis. International journal of cardiology 126: 240–246.
https://doi.org/10.1016/j.ijcard.2007.03.134 PMID: 17482293 | |
dc.relation | 4. Linne Y (2004) Effects of obesity on women’s reproduction and complications during pregnancy. Obesity reviews 5: 137–143. https://doi.org/10.1111/j.1467-789X.2004.00147.x PMID: 15245382 | |
dc.relation | 5. Dietl J (2005) Maternal obesity and complications during pregnancy. Journal of perinatal medicine 33:
100–105. https://doi.org/10.1515/JPM.2005.018 PMID: 15843256 | |
dc.relation | 6. Wood SL, Newton JM, Wang L, Lesser K (2014) Borderline Amniotic Fluid Index and Its Relation to
Fetal Intolerance of Labor: A 2-Center Retrospective Cohort Study. Journal of Ultrasound in Medicine
33: 705–711. https://doi.org/10.7863/ultra.33.4.705 PMID: 24658952 | |
dc.relation | 7. Sermer M, Naylor CD, Gare DJ, Kenshole AB, Ritchie J, et al. (1995) Impact of increasing carbohydrate intolerance on maternal-fetal outcomes in 3637 women without gestational diabetes: the Toronto TriHospital Gestational Diabetes Project. American journal of obstetrics and gynecology 173: 146–156. https://doi.org/10.1016/0002-9378(95)90183-3 PMID: 7631672 | |
dc.relation | 8. Sacks D (1993) Fetal macrosomia and gestational diabetes: what’s the problem? Obstetrics and gynecology 81: 775–781. PMID: 8469471 | |
dc.relation | 9. Lockshin MD, Druzin ML, Goei S, Qamar T, Magid MS, et al. (1985) Antibody to cardiolipin as a predictor of fetal distress or death in pregnant patients with systemic lupus erythematosus. New England Journal of Medicine 313: 152–156. https://doi.org/10.1056/NEJM198507183130304 PMID: 3925336 | |
dc.relation | 10. Impey L (1993) Severe hypotension and fetal distress following sublingual administration of nifedipine to a patient with severe pregnancy induced hypertension at 33 weeks. BJOG: An International Journal of Obstetrics & Gynaecology 100: 959–961. https://doi.org/10.1111/j.1471-0528.1993.tb15120.xPMID: 8217985 | |
dc.relation | 11. Laurin J, Lingman G, Marsa´l K, Persson P (1987) Fetal blood flow in pregnancies complicated by intrauterine growth retardation. Obstetrics and Gynecology 69: 895–902. PMID: 3554065 | |
dc.relation | 12. Heitzer E, Haque IS, Roberts CE, Speicher MR (2019) Current and future perspectives of liquid biopsies in genomics-driven oncology. Nature Reviews Genetics 20: 71–88. https://doi.org/10.1038/s41576-018-0071-5 PMID: 30410101 | |
dc.relation | 13. San Lucas F, Allenson K, Bernard V, Castillo J, Kim D, et al. (2016) Minimally invasive genomic and
transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes.
Annals of Oncology 27: 635–641. https://doi.org/10.1093/annonc/mdv604 PMID: 26681674 | |
dc.relation | 14. Kim Y, Jeon J, Mejia S, Yao CQ, Ignatchenko V, et al. (2016) Targeted proteomics identifies liquidbiopsy signatures for extracapsular prostate cancer. Nature communications 7: 1–10. https://doi.org/
10.1038/ncomms11906 PMID: 27350604 | |
dc.relation | 15. Ying W, Jingli F, Wei SW, Li WL (2010) Genomic imprinting status of IGF-II and H19 in placentas of
fetal growth restriction patients. J Genet 89: 213–216. https://doi.org/10.1007/s12041-010-0027-9
PMID: 20861572 | |
dc.relation | 16. Knight AK, Conneely KN, Kilaru V, Cobb D, Payne JL, et al. (2018) SLC9B1 methylation predicts fetal
intolerance of labor. Epigenetics 13: 33–39. https://doi.org/10.1080/15592294.2017.1411444 PMID:
29235940 | |
dc.relation | 17. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: Synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research 16: 321–357. | |
dc.relation | 18. Kursa M, Rudnicki W (2010) Feature Selection with the Boruta Package. Journal of Statistical Software,
Articles 36: 1–13. | |
dc.relation | 19. Peng HC, Long FH, Ding C (2005) Feature selection based on mutual information: Criteria of maxdependency, max-relevance, and min-redundancy. Ieee Transactions on Pattern Analysis And
Machine Intelligence 27: 1226–1238. https://doi.org/10.1109/TPAMI.2005.159 PMID: 16119262 | |
dc.relation | 20. Pan X, Li H, Zeng T, Li Z, Chen L, et al. (2021) Identification of protein subcellular localization with network and functional embeddings. Frontiers in Genetics 11: 626500. https://doi.org/10.3389/fgene.
2020.626500 PMID: 33584818 | |
dc.relation | 21. Zhang Y-H, Li H, Zeng T, Chen L, Li Z, et al. (2021) Identifying transcriptomic signatures and rules for
SARS-CoV-2 infection. Frontiers in Cell and Developmental Biology 8: 627302. https://doi.org/10.3389/
fcell.2020.627302 PMID: 33505977 | |
dc.relation | 22. Zhao X, Chen L, Lu J (2018) A similarity-based method for prediction of drug side effects with heterogeneous information. Mathematical Biosciences 306: 136–144. https://doi.org/10.1016/j.mbs.2018.09.
010 PMID: 30296417 | |
dc.relation | 23. Liu HA, Setiono R (1998) Incremental feature selection. Applied Intelligence 9: 217–230. | |
dc.relation | 24. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection; 1995.
Lawrence Erlbaum Associates Ltd. pp. 1137–1145. | |
dc.relation | 25. Breiman L (2001) Random forests. Machine learning 45: 5–32. | |
dc.relation | 26. Jia Y, Zhao R, Chen L (2020) Similarity-Based Machine Learning Model for Predicting the Metabolic
Pathways of Compounds. IEEE Access 8: 130687–130696. | |
dc.relation | 27. Liang H, Chen L, Zhao X, Zhang X (2020) Prediction of drug side effects with a refined negative sample
selection strategy. Computational and Mathematical Methods in Medicine 2020: 1573543. https://doi.
org/10.1155/2020/1573543 PMID: 32454877 | |
dc.relation | 28. Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20: 273–297. | |
dc.relation | 29. Zhou J-P, Chen L, Guo Z-H (2020) iATC-NRAKEL: An efficient multi-label classifier for recognizing anatomical therapeutic chemical classes of drugs. Bioinformatics 36: 1391–1396. https://doi.org/10.1093/
bioinformatics/btz757 PMID: 31593226 | |
dc.relation | 30. Zhou J-P, Chen L, Wang T, Liu M (2020) iATC-FRAKEL: A simple multi-label web-server for recognizing anatomical therapeutic chemical classes of drugs with their fingerprints only. Bioinformatics 36:
3568–3569. https://doi.org/10.1093/bioinformatics/btaa166 PMID: 32154836 | |
dc.relation | 31. Zhu Y, Hu B, Chen L, Dai Q (2021) iMPTCE-Hnetwork: a multi-label classifier for identifying metabolic
pathway types of chemicals and enzymes with a heterogeneous network. Computational and Mathematical Methods in Medicine 2021: 6683051. https://doi.org/10.1155/2021/6683051 PMID: 33488764 | |
dc.relation | 32. Frank E, Hall M, Trigg L, Holmes G, Witten IH (2004) Data mining in bioinformatics using Weka. Bioinformatics 20: 2479–2481. https://doi.org/10.1093/bioinformatics/bth261 PMID: 15073010 | |
dc.relation | 33. Witten IH, Frank E (2005) Data Mining: Practical machine learning tools and techniques: Morgan Kaufmann Pub. | |
dc.relation | 34. Cohen WW (1995) Fast Effective Rule Induction. Twelfth International Conference on Machine
Learning. pp. 115–123. | |
dc.relation | 35. Matthews B (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure 405: 442–451. https://doi.org/10.1016/
0005-2795(75)90109-9 PMID: 1180967 | |
dc.relation | 36. Zhang Y-H, Zeng T, Chen L, Huang T, Cai Y-D (2021) Detecting the multiomics signatures of factorspecific inflammatory effects on airway smooth muscles. Frontiers in Genetics 11: 599970. https://doi.
org/10.3389/fgene.2020.599970 PMID: 33519902 | |
dc.relation | 37. Liu H, Hu B, Chen L, Lu L (2020) Identifying protein subcellular location with embedding features
learned from networks. Current Proteomics. | |
dc.relation | 38. Kumar PL, James PF (2015) Identification and characterization of methylation-dependent/independent
DNA regulatory elements in the human SLC9B1 gene. Gene 561: 235–248. https://doi.org/10.1016/j.
gene.2015.02.050 PMID: 25701605 | |
dc.relation | 39. Hargan Calvopina JD (2016) Mechanisms of demethylation in primordial germ cells and the importance
of stage-specific demethylation in safeguarding against precocious differentiation: UCLA. https://doi.
org/10.1016/j.devcel.2016.07.019 PMID: 27618282 | |
dc.relation | 40. Auclair G, Borgel J, Sanz LA, Vallet J, Guibert S, et al. (2016) EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos. Genome research 26: 192–202. https://doi.org/10.1101/gr.
198291.115 PMID: 26576615 | |
dc.relation | 41. Nishioka M, Bundo M, Koike S, Takizawa R, Kakiuchi C, et al. (2013) Comprehensive DNA methylation
analysis of peripheral blood cells derived from patients with first-episode schizophrenia. Journal of
human genetics 58: 91–97. https://doi.org/10.1038/jhg.2012.140 PMID: 23235336 | |
dc.relation | 42. Wockner LF, Noble EP, Lawford BR, Young RM, Morris CP, et al. (2014) Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Translational psychiatry 4: e339–
e339. https://doi.org/10.1038/tp.2013.111 PMID: 24399042 | |
dc.relation | 43. Houseman EA, Kim S, Kelsey KT, Wiencke JK (2015) DNA methylation in whole blood: uses and challenges. Current environmental health reports 2: 145–154. https://doi.org/10.1007/s40572-015-0050-3
PMID: 26231364 | |
dc.relation | 44. Abdolmaleky HM, Zhou J-R, Thiagalingam S (2015) An update on the epigenetics of psychotic diseases
and autism. Epigenomics 7: 427–449. https://doi.org/10.2217/epi.14.85 PMID: 26077430 | |
dc.relation | 45. Zaki M, Boyd P, Impey L, Roberts A, Chamberlain P (2007) Congenital myotonic dystrophy: prenatal
ultrasound findings and pregnancy outcome. Ultrasound in Obstetrics and Gynecology: The Official
Journal of the International Society of Ultrasound in Obstetrics and Gynecology 29: 284–288. https://
doi.org/10.1002/uog.3859 PMID: 17238150 | |
dc.relation | 46. Panigrahy N, Lingappa L, Ramadevi AR, Venkatlakshmi A (2016) Congenital disorder of glycosylation
(CDG) presenting as non-immune hydrops fetalis. The Indian Journal of Pediatrics 83: 359–360.
https://doi.org/10.1007/s12098-015-1895-z PMID: 26365158 | |
dc.relation | 47. Poquet H, Faivre L, El Chehadeh S, Morton J, McMullan D, et al. (2017) Further Evidence for Dlgap2 as
strong Autism Spectrum disorders/intellectual disability candidate gene. Autism Open Access 6: 2. | |
dc.relation | 48. Chertkow-Deutsher Y, Cohen H, Klein E, Ben-Shachar D (2010) DNA methylation in vulnerability to
post-traumatic stress in rats: evidence for the role of the post-synaptic density protein Dlgap2. International Journal of Neuropsychopharmacology 13: 347–359. https://doi.org/10.1017/
S146114570999071X PMID: 19793403 | |
dc.relation | 49. Hivert M-F, Cardenas A, Allard C, Doyon M, Powe CE, et al. (2020) Interplay of Placental DNA Methylation and Maternal Insulin Sensitivity in Pregnancy. Diabetes 69: 484–492. https://doi.org/10.2337/
db19-0798 PMID: 31882564 | |
dc.relation | 50. De Felice B, Manfellotto F, Palumbo A, Troisi J, Zullo F, et al. (2015) Genome–wide microRNA expression profiling in placentas from pregnant women exposed to BPA. BMC medical genomics 8: 56.
https://doi.org/10.1186/s12920-015-0131-z PMID: 26345457 | |
dc.relation | 51. Luo ZC, Nuyt AM, Delvin E, Fraser WD, Julien P, et al. (2013) Maternal and fetal leptin, adiponectin levels and associations with fetal insulin sensitivity. Obesity 21: 210–216. https://doi.org/10.1002/oby.
20250 PMID: 23505188 | |
dc.relation | 52. El Mallah K, Narchi H, Kulaylat N, Shaban M (1997) Gestational and pre-gestational diabetes: comparison of maternal and fetal characteristics and outcome. International Journal of Gynecology & Obstetrics
58: 203–209. https://doi.org/10.1016/s0020-7292(97)00084-2 PMID: 9252256 | |
dc.relation | 53. Donat S, Lourenc¸o M, Paolini A, Otten C, Renz M, et al. (2018) Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis. Elife 7: e28939. https://doi.org/10.7554/
eLife.28939 PMID: 29364115 | |
dc.relation | 54. Ramos CJ, Antonetti DA (2017) The role of small GTPases and EPAC-Rap signaling in the regulation
of the blood-brain and blood-retinal barriers. Tissue barriers 5: e1339768. https://doi.org/10.1080/
21688370.2017.1339768 PMID: 28632993 | |
dc.relation | 55. Groenendijk BC, Hierck BP, Gittenberger-de Groot AC, Poelmann RE (2004) Development-related
changes in the expression of shear stress responsive genes KLF-2, ET-1, and NOS-3 in the developing
cardiovascular system of chicken embryos. Developmental dynamics: an official publication of the
American Association of Anatomists 230: 57–68. | |
dc.relation | 56. Sarnat HB, Sarnat MS (1976) Neonatal encephalopathy following fetal distress: a clinical and electroencephalographic study. Archives of neurology 33: 696–705. https://doi.org/10.1001/archneur.1976.
00500100030012 PMID: 987769 | |
dc.relation | 57. Chung D, Sim Y, Park K, Yi S, Shin J, et al. (2001) Spectral analysis of fetal heart rate variability as a
predictor of intrapartum fetal distress. International Journal of Gynecology & Obstetrics 73: 109–116. | |
dc.relation | 58. Zuspan FP, Quilligan E, Iams JD, van Geijn HP (1979) Predictors of intrapartum fetal distress: The role of electronic fetal monitoring: Report of the National Institute of Child Health and Human Development
Consensus Development Task Force. American Journal of Obstetrics & Gynecology 135: 287–291. | |
dc.relation | 59. Vieira SE, Bando SY, de Paulis M, Oliveira DB, Thomazelli LM, et al. (2019) Distinct transcriptional
modules in the peripheral blood mononuclear cells response to human respiratory syncytial virus or to human rhinovirus in hospitalized infants with bronchiolitis. PloS one 14: e0213501. https://doi.org/10.1371/journal.pone.0213501 PMID: 30845274 | |
dc.relation | 60. Lim JH, Kang Y-J, Lee BY, Han YJ, Chung JH, et al. (2019) Epigenome-wide base-resolution profiling
of DNA methylation in chorionic villi of fetuses with Down syndrome by methyl-capture sequencing. Clinical Epigenetics 11: 180. https://doi.org/10.1186/s13148-019-0756-4 PMID: 31801612 | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | PLoS ONE | |
dc.source | https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250032#:~:text=In%202018%2C%20an%20independent%20study,functionally%20correlated%20with%20gene%20expression. | |
dc.subject | Methylation | |
dc.subject | Gene expression | |
dc.subject | Pregnancy | |
dc.subject | Biomarkers | |
dc.subject | Blood | |
dc.subject | Oxygen | |
dc.subject | Biopsy | |
dc.subject | Support vector machines | |
dc.title | Investigating gene methylation signatures for fetal intolerance prediction | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |