dc.creatorZhang, Yu-Hang
dc.creatorLi, Zhandong
dc.creatorZeng, Tao
dc.creatorChen, Lei
dc.creatorLi, Hao
dc.creatorGamarra, Margarita
dc.creatorMansourI, Romany F.
dc.creatorEscorcia-Gutierrez, Jose
dc.creatorHuang, Tao
dc.creatorCai, Yu-Dong
dc.date2021-05-20T18:12:42Z
dc.date2021-05-20T18:12:42Z
dc.date2021-04-22
dc.date.accessioned2023-10-03T20:00:47Z
dc.date.available2023-10-03T20:00:47Z
dc.identifier1932-6203
dc.identifierhttps://hdl.handle.net/11323/8267
dc.identifierhttps://doi.org/10.1371/journal.pone.0250032
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173831
dc.descriptionPregnancy is a complicated and long procedure during one or more offspring development inside a woman. A short period of oxygen shortage after birth is quite normal for most babies and does not threaten their health. However, if babies have to suffer from a long period of oxygen shortage, then this condition is an indication of pathological fetal intolerance, which probably causes their death. The identification of the pathological fetal intolerance from the physical oxygen shortage is one of the important clinical problems in obstetrics for a long time. The clinical syndromes typically manifest five symptoms that indicate that the baby may suffer from fetal intolerance. At present, liquid biopsy combined with high-throughput sequencing or mass spectrum techniques provides a quick approach to detect real-time alteration in the peripheral blood at multiple levels with the rapid development of molecule sequencing technologies. Gene methylation is functionally correlated with gene expression; thus, the combination of gene methylation and expression information would help in screening out the key regulators for the pathogenesis of fetal intolerance. We combined gene methylation and expression features together and screened out the optimal features, including gene expression or methylation signatures, for fetal intolerance prediction for the first time. In addition, we applied various computational methods to construct a comprehensive computational pipeline to identify the potential biomarkers for fetal intolerance dependent on the liquid biopsy samples. We set up qualitative and quantitative computational models for the prediction for fetal intolerance during pregnancy. Moreover, we provided a new prospective for the detailed pathological mechanism of fetal intolerance. This work can provide a solid foundation for further experimental research and contribute to the application of liquid biopsy in antenatal care.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation1. Bondas T, Eriksson K (2001) Women’s lived experiences of pregnancy: A tapestry of joy and suffering. Qualitative Health Research 11: 824–840. https://doi.org/10.1177/104973201129119415 PMID: 11710080
dc.relation2. Macklin R (2010) Enrolling pregnant women in biomedical research. The Lancet 375: 632–633. https:// doi.org/10.1016/s0140-6736(10)60257-7 PMID: 20198725
dc.relation3. Yap S-C, Drenthen W, Pieper PG, Moons P, Mulder BJ, et al. (2008) Risk of complications during pregnancy in women with congenital aortic stenosis. International journal of cardiology 126: 240–246. https://doi.org/10.1016/j.ijcard.2007.03.134 PMID: 17482293
dc.relation4. Linne Y (2004) Effects of obesity on women’s reproduction and complications during pregnancy. Obesity reviews 5: 137–143. https://doi.org/10.1111/j.1467-789X.2004.00147.x PMID: 15245382
dc.relation5. Dietl J (2005) Maternal obesity and complications during pregnancy. Journal of perinatal medicine 33: 100–105. https://doi.org/10.1515/JPM.2005.018 PMID: 15843256
dc.relation6. Wood SL, Newton JM, Wang L, Lesser K (2014) Borderline Amniotic Fluid Index and Its Relation to Fetal Intolerance of Labor: A 2-Center Retrospective Cohort Study. Journal of Ultrasound in Medicine 33: 705–711. https://doi.org/10.7863/ultra.33.4.705 PMID: 24658952
dc.relation7. Sermer M, Naylor CD, Gare DJ, Kenshole AB, Ritchie J, et al. (1995) Impact of increasing carbohydrate intolerance on maternal-fetal outcomes in 3637 women without gestational diabetes: the Toronto TriHospital Gestational Diabetes Project. American journal of obstetrics and gynecology 173: 146–156. https://doi.org/10.1016/0002-9378(95)90183-3 PMID: 7631672
dc.relation8. Sacks D (1993) Fetal macrosomia and gestational diabetes: what’s the problem? Obstetrics and gynecology 81: 775–781. PMID: 8469471
dc.relation9. Lockshin MD, Druzin ML, Goei S, Qamar T, Magid MS, et al. (1985) Antibody to cardiolipin as a predictor of fetal distress or death in pregnant patients with systemic lupus erythematosus. New England Journal of Medicine 313: 152–156. https://doi.org/10.1056/NEJM198507183130304 PMID: 3925336
dc.relation10. Impey L (1993) Severe hypotension and fetal distress following sublingual administration of nifedipine to a patient with severe pregnancy induced hypertension at 33 weeks. BJOG: An International Journal of Obstetrics & Gynaecology 100: 959–961. https://doi.org/10.1111/j.1471-0528.1993.tb15120.xPMID: 8217985
dc.relation11. Laurin J, Lingman G, Marsa´l K, Persson P (1987) Fetal blood flow in pregnancies complicated by intrauterine growth retardation. Obstetrics and Gynecology 69: 895–902. PMID: 3554065
dc.relation12. Heitzer E, Haque IS, Roberts CE, Speicher MR (2019) Current and future perspectives of liquid biopsies in genomics-driven oncology. Nature Reviews Genetics 20: 71–88. https://doi.org/10.1038/s41576-018-0071-5 PMID: 30410101
dc.relation13. San Lucas F, Allenson K, Bernard V, Castillo J, Kim D, et al. (2016) Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes. Annals of Oncology 27: 635–641. https://doi.org/10.1093/annonc/mdv604 PMID: 26681674
dc.relation14. Kim Y, Jeon J, Mejia S, Yao CQ, Ignatchenko V, et al. (2016) Targeted proteomics identifies liquidbiopsy signatures for extracapsular prostate cancer. Nature communications 7: 1–10. https://doi.org/ 10.1038/ncomms11906 PMID: 27350604
dc.relation15. Ying W, Jingli F, Wei SW, Li WL (2010) Genomic imprinting status of IGF-II and H19 in placentas of fetal growth restriction patients. J Genet 89: 213–216. https://doi.org/10.1007/s12041-010-0027-9 PMID: 20861572
dc.relation16. Knight AK, Conneely KN, Kilaru V, Cobb D, Payne JL, et al. (2018) SLC9B1 methylation predicts fetal intolerance of labor. Epigenetics 13: 33–39. https://doi.org/10.1080/15592294.2017.1411444 PMID: 29235940
dc.relation17. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16: 321–357.
dc.relation18. Kursa M, Rudnicki W (2010) Feature Selection with the Boruta Package. Journal of Statistical Software, Articles 36: 1–13.
dc.relation19. Peng HC, Long FH, Ding C (2005) Feature selection based on mutual information: Criteria of maxdependency, max-relevance, and min-redundancy. Ieee Transactions on Pattern Analysis And Machine Intelligence 27: 1226–1238. https://doi.org/10.1109/TPAMI.2005.159 PMID: 16119262
dc.relation20. Pan X, Li H, Zeng T, Li Z, Chen L, et al. (2021) Identification of protein subcellular localization with network and functional embeddings. Frontiers in Genetics 11: 626500. https://doi.org/10.3389/fgene. 2020.626500 PMID: 33584818
dc.relation21. Zhang Y-H, Li H, Zeng T, Chen L, Li Z, et al. (2021) Identifying transcriptomic signatures and rules for SARS-CoV-2 infection. Frontiers in Cell and Developmental Biology 8: 627302. https://doi.org/10.3389/ fcell.2020.627302 PMID: 33505977
dc.relation22. Zhao X, Chen L, Lu J (2018) A similarity-based method for prediction of drug side effects with heterogeneous information. Mathematical Biosciences 306: 136–144. https://doi.org/10.1016/j.mbs.2018.09. 010 PMID: 30296417
dc.relation23. Liu HA, Setiono R (1998) Incremental feature selection. Applied Intelligence 9: 217–230.
dc.relation24. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection; 1995. Lawrence Erlbaum Associates Ltd. pp. 1137–1145.
dc.relation25. Breiman L (2001) Random forests. Machine learning 45: 5–32.
dc.relation26. Jia Y, Zhao R, Chen L (2020) Similarity-Based Machine Learning Model for Predicting the Metabolic Pathways of Compounds. IEEE Access 8: 130687–130696.
dc.relation27. Liang H, Chen L, Zhao X, Zhang X (2020) Prediction of drug side effects with a refined negative sample selection strategy. Computational and Mathematical Methods in Medicine 2020: 1573543. https://doi. org/10.1155/2020/1573543 PMID: 32454877
dc.relation28. Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20: 273–297.
dc.relation29. Zhou J-P, Chen L, Guo Z-H (2020) iATC-NRAKEL: An efficient multi-label classifier for recognizing anatomical therapeutic chemical classes of drugs. Bioinformatics 36: 1391–1396. https://doi.org/10.1093/ bioinformatics/btz757 PMID: 31593226
dc.relation30. Zhou J-P, Chen L, Wang T, Liu M (2020) iATC-FRAKEL: A simple multi-label web-server for recognizing anatomical therapeutic chemical classes of drugs with their fingerprints only. Bioinformatics 36: 3568–3569. https://doi.org/10.1093/bioinformatics/btaa166 PMID: 32154836
dc.relation31. Zhu Y, Hu B, Chen L, Dai Q (2021) iMPTCE-Hnetwork: a multi-label classifier for identifying metabolic pathway types of chemicals and enzymes with a heterogeneous network. Computational and Mathematical Methods in Medicine 2021: 6683051. https://doi.org/10.1155/2021/6683051 PMID: 33488764
dc.relation32. Frank E, Hall M, Trigg L, Holmes G, Witten IH (2004) Data mining in bioinformatics using Weka. Bioinformatics 20: 2479–2481. https://doi.org/10.1093/bioinformatics/bth261 PMID: 15073010
dc.relation33. Witten IH, Frank E (2005) Data Mining: Practical machine learning tools and techniques: Morgan Kaufmann Pub.
dc.relation34. Cohen WW (1995) Fast Effective Rule Induction. Twelfth International Conference on Machine Learning. pp. 115–123.
dc.relation35. Matthews B (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure 405: 442–451. https://doi.org/10.1016/ 0005-2795(75)90109-9 PMID: 1180967
dc.relation36. Zhang Y-H, Zeng T, Chen L, Huang T, Cai Y-D (2021) Detecting the multiomics signatures of factorspecific inflammatory effects on airway smooth muscles. Frontiers in Genetics 11: 599970. https://doi. org/10.3389/fgene.2020.599970 PMID: 33519902
dc.relation37. Liu H, Hu B, Chen L, Lu L (2020) Identifying protein subcellular location with embedding features learned from networks. Current Proteomics.
dc.relation38. Kumar PL, James PF (2015) Identification and characterization of methylation-dependent/independent DNA regulatory elements in the human SLC9B1 gene. Gene 561: 235–248. https://doi.org/10.1016/j. gene.2015.02.050 PMID: 25701605
dc.relation39. Hargan Calvopina JD (2016) Mechanisms of demethylation in primordial germ cells and the importance of stage-specific demethylation in safeguarding against precocious differentiation: UCLA. https://doi. org/10.1016/j.devcel.2016.07.019 PMID: 27618282
dc.relation40. Auclair G, Borgel J, Sanz LA, Vallet J, Guibert S, et al. (2016) EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos. Genome research 26: 192–202. https://doi.org/10.1101/gr. 198291.115 PMID: 26576615
dc.relation41. Nishioka M, Bundo M, Koike S, Takizawa R, Kakiuchi C, et al. (2013) Comprehensive DNA methylation analysis of peripheral blood cells derived from patients with first-episode schizophrenia. Journal of human genetics 58: 91–97. https://doi.org/10.1038/jhg.2012.140 PMID: 23235336
dc.relation42. Wockner LF, Noble EP, Lawford BR, Young RM, Morris CP, et al. (2014) Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Translational psychiatry 4: e339– e339. https://doi.org/10.1038/tp.2013.111 PMID: 24399042
dc.relation43. Houseman EA, Kim S, Kelsey KT, Wiencke JK (2015) DNA methylation in whole blood: uses and challenges. Current environmental health reports 2: 145–154. https://doi.org/10.1007/s40572-015-0050-3 PMID: 26231364
dc.relation44. Abdolmaleky HM, Zhou J-R, Thiagalingam S (2015) An update on the epigenetics of psychotic diseases and autism. Epigenomics 7: 427–449. https://doi.org/10.2217/epi.14.85 PMID: 26077430
dc.relation45. Zaki M, Boyd P, Impey L, Roberts A, Chamberlain P (2007) Congenital myotonic dystrophy: prenatal ultrasound findings and pregnancy outcome. Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 29: 284–288. https:// doi.org/10.1002/uog.3859 PMID: 17238150
dc.relation46. Panigrahy N, Lingappa L, Ramadevi AR, Venkatlakshmi A (2016) Congenital disorder of glycosylation (CDG) presenting as non-immune hydrops fetalis. The Indian Journal of Pediatrics 83: 359–360. https://doi.org/10.1007/s12098-015-1895-z PMID: 26365158
dc.relation47. Poquet H, Faivre L, El Chehadeh S, Morton J, McMullan D, et al. (2017) Further Evidence for Dlgap2 as strong Autism Spectrum disorders/intellectual disability candidate gene. Autism Open Access 6: 2.
dc.relation48. Chertkow-Deutsher Y, Cohen H, Klein E, Ben-Shachar D (2010) DNA methylation in vulnerability to post-traumatic stress in rats: evidence for the role of the post-synaptic density protein Dlgap2. International Journal of Neuropsychopharmacology 13: 347–359. https://doi.org/10.1017/ S146114570999071X PMID: 19793403
dc.relation49. Hivert M-F, Cardenas A, Allard C, Doyon M, Powe CE, et al. (2020) Interplay of Placental DNA Methylation and Maternal Insulin Sensitivity in Pregnancy. Diabetes 69: 484–492. https://doi.org/10.2337/ db19-0798 PMID: 31882564
dc.relation50. De Felice B, Manfellotto F, Palumbo A, Troisi J, Zullo F, et al. (2015) Genome–wide microRNA expression profiling in placentas from pregnant women exposed to BPA. BMC medical genomics 8: 56. https://doi.org/10.1186/s12920-015-0131-z PMID: 26345457
dc.relation51. Luo ZC, Nuyt AM, Delvin E, Fraser WD, Julien P, et al. (2013) Maternal and fetal leptin, adiponectin levels and associations with fetal insulin sensitivity. Obesity 21: 210–216. https://doi.org/10.1002/oby. 20250 PMID: 23505188
dc.relation52. El Mallah K, Narchi H, Kulaylat N, Shaban M (1997) Gestational and pre-gestational diabetes: comparison of maternal and fetal characteristics and outcome. International Journal of Gynecology & Obstetrics 58: 203–209. https://doi.org/10.1016/s0020-7292(97)00084-2 PMID: 9252256
dc.relation53. Donat S, Lourenc¸o M, Paolini A, Otten C, Renz M, et al. (2018) Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis. Elife 7: e28939. https://doi.org/10.7554/ eLife.28939 PMID: 29364115
dc.relation54. Ramos CJ, Antonetti DA (2017) The role of small GTPases and EPAC-Rap signaling in the regulation of the blood-brain and blood-retinal barriers. Tissue barriers 5: e1339768. https://doi.org/10.1080/ 21688370.2017.1339768 PMID: 28632993
dc.relation55. Groenendijk BC, Hierck BP, Gittenberger-de Groot AC, Poelmann RE (2004) Development-related changes in the expression of shear stress responsive genes KLF-2, ET-1, and NOS-3 in the developing cardiovascular system of chicken embryos. Developmental dynamics: an official publication of the American Association of Anatomists 230: 57–68.
dc.relation56. Sarnat HB, Sarnat MS (1976) Neonatal encephalopathy following fetal distress: a clinical and electroencephalographic study. Archives of neurology 33: 696–705. https://doi.org/10.1001/archneur.1976. 00500100030012 PMID: 987769
dc.relation57. Chung D, Sim Y, Park K, Yi S, Shin J, et al. (2001) Spectral analysis of fetal heart rate variability as a predictor of intrapartum fetal distress. International Journal of Gynecology & Obstetrics 73: 109–116.
dc.relation58. Zuspan FP, Quilligan E, Iams JD, van Geijn HP (1979) Predictors of intrapartum fetal distress: The role of electronic fetal monitoring: Report of the National Institute of Child Health and Human Development Consensus Development Task Force. American Journal of Obstetrics & Gynecology 135: 287–291.
dc.relation59. Vieira SE, Bando SY, de Paulis M, Oliveira DB, Thomazelli LM, et al. (2019) Distinct transcriptional modules in the peripheral blood mononuclear cells response to human respiratory syncytial virus or to human rhinovirus in hospitalized infants with bronchiolitis. PloS one 14: e0213501. https://doi.org/10.1371/journal.pone.0213501 PMID: 30845274
dc.relation60. Lim JH, Kang Y-J, Lee BY, Han YJ, Chung JH, et al. (2019) Epigenome-wide base-resolution profiling of DNA methylation in chorionic villi of fetuses with Down syndrome by methyl-capture sequencing. Clinical Epigenetics 11: 180. https://doi.org/10.1186/s13148-019-0756-4 PMID: 31801612
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcePLoS ONE
dc.sourcehttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250032#:~:text=In%202018%2C%20an%20independent%20study,functionally%20correlated%20with%20gene%20expression.
dc.subjectMethylation
dc.subjectGene expression
dc.subjectPregnancy
dc.subjectBiomarkers
dc.subjectBlood
dc.subjectOxygen
dc.subjectBiopsy
dc.subjectSupport vector machines
dc.titleInvestigating gene methylation signatures for fetal intolerance prediction
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución