Una nueva capa de protección a través de súper alarmas con capacidad de diagnóstico

dc.creatorVásquez-Capacho, John-William
dc.creatorPerez-Zuñiga, Gustavo
dc.creatorMuñoz, Yecid
dc.creatorOspino, Adalberto
dc.date2020-07-17T15:15:37Z
dc.date2020-07-17T15:15:37Z
dc.date2020-03-17
dc.date.accessioned2023-10-03T20:00:30Z
dc.date.available2023-10-03T20:00:30Z
dc.identifier0122-5383
dc.identifierhttps://hdl.handle.net/11323/6622
dc.identifierDOI : 10.29047/01225383.168
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173810
dc.descriptionAn alarm management methodology can be proposed as a discrete event sequence recognition problem where time patterns are used to identify the process safe condition, especially in the start-up and shutdown stages. Industrial plants, particularly in the petrochemical, energy, and chemical sectors, require a combined approach of all the events that can result in a catastrophic accident. This document introduces a new layer of protection (super-alarm) for industrial processes based on a diagnostic stage. Alarms and actions of the standard operating procedure are considered discrete events involved in sequences, where the diagnostic stage corresponds to the recognition of a special situation when these sequences occur. This is meant to provide operators with pertinent information regarding the normal or abnormal situations induced by the flow of alarms. Chronicles Based Alarm Management (CBAM) is the methodology used to build the chronicles that will permit to generate the super-alarms furthermore, a case study of the petrochemical sector using CBAM is presented to build the chronicles of the normal startup, abnormal start-up, and normal shutdown scenarios. Finally, the scenario validation is performed for an abnormal start-up, showing how a super-alarm is generated.
dc.descriptionSe puede formular una metodología de gestión de alarmas como un problema de reconocimiento de secuencia de eventos discretos en el que se utilizan patrones de tiempo para identificar la condición segura del proceso, especialmente en las etapas de arranque y parada de planta. Las plantas industriales, particularmente en las industrias petroquímica, energética y química, requieren una administración combinada de todos los eventos que pueden producir un accidente catastrófico. En este documento, se introduce una nueva capa de protección (súper alarma) a los procesos industriales basados en una etapa de diagnóstico. Las alarmas y las acciones estándar del procedimiento operativo son asumidas como eventos discretos involucrados en las secuencias, luego la etapa de diagnóstico corresponde al reconocimiento de la situación cuando ocurren estas secuencias. Esto proporciona a los operadores información pertinente sobre las situaciones normales o anormales inducidas por el flujo de alarmas. La gestión de alarmas basadas en crónicas (CBAM) es la metodología utilizada en este artículo para construir las crónicas que permitirán generar las super alarmas, además, se presenta un caso de estudio del sector petroquímico que usa CBAM para construir las crónicas de los escenarios de un arranque normal, un arranque anormal y un apagado normal. Finalmente, la validación del escenario se realiza para un arranque anormal, mostrando cómo se genera una súper alarma.
dc.formatapplication/pdf
dc.languageeng
dc.publisherCT y F - Ciencia, Tecnologia y Futuro
dc.relation[1] R. W. Brennan, Toward real-time distributed intelligent control: A survey of research themes and applications, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 37 (5) (2007) 744–765. doi:10.1109/TSMCC.2007.900670.
dc.relation[2] M. Khalgui, O. Mosbahi, Z. Li, H. Hanisch, Reconfigura tion of distributed embedded-control systems, IEEE/ ASME Transactions on Mechatronics 16 (4) (2011) 684–694. doi:10.1109/TMECH.2010.2050697.
dc.relation[3] D. J. Reifer, Software failure modes and effects analysis, IEEE Transactions on Reliability R-28 (3) (1979) 247–249. doi:10.1109/TR.1979.5220578.
dc.relation[4] M. G. Mehrabi, A. G. Ulsoy, Y. Koren, Reconfigurable manufacturing systems: Key to future manufacturing, Journal of Intelligent Manufacturing 11 (4) (2000) 403–419. doi:10.1023/A:1008930403506. URL https://doi.org/10.1023/A:1008930403506
dc.relation[5] V. Rodrigo, M. Chioua, T. Hagglund, M. Hollender, Causal analysis for alarm flood reduction, IFACPapersOnLine 49 (7) (2016) 723 – 728, 11th IFAC Symposium on Dynamics and Control of Process SystemsIncluding Biosystems DYCOPS-CAB 2016. doi:https://doi.org/10.1016/j.ifacol.2016.07.269.
dc.relation[6] L. Bodsberg, P. Hokstad, Alarm and shutdown frequencies in offshore production, IFAC Proceedings Volumes 21 (15) (1988) 19 – 25, Ifac Workshop on Industrial Process Control Systems, Bruges, Belgium, 28 30 September. doi:https://doi.org/10.1016/S14746670(17)54672-8.
dc.relation[7] C. Agudelo, F. Morant Anglada, E. Quiles Cucarella, E. Garca Moreno, Secuencias de alarmas para detecci´on y diagno´stico de fallos, Revista Colombiana de Computaci´on 12 (2) (2011) 31–44. doi:10.29375/25392115.1798.
dc.relation[8] C. Agudelo, Integracio´n de t´ecnicas y las secuencias de alarmas para la deteccio´n y el diagnostico de fallos, Ph.D. thesis, Universidad Politecnica de Valencia (2016). doi:doi:10.4995/Thesis/10251/63450. URL https://riunet. upv.es/handle/10251/63450
dc.relation[9] J. W. Vásquez Capacho, Chronicle Based Alarm Management, These, INSA Toulouse, these en cotutelle avec l’Universidad de los Andes, Colombie (Oct. 2017). URL https://hal.laas.fr/tel-02059631
dc.relation[10] L. Magni, R. Scattolini, C. Rossi, A fault detection and isolation method for complex industrial systems, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 30 (6) (2000) 860–865. doi:10.1109/3468.895922.
dc.relation[11] M. Hollender, T. Skovholt, J. Evans, Holistic alarm management throughout the plant lifecycle, in: 2016 Petroleum and Chemical Industry Conference Europe (PCIC Europe), 2016, pp. 1–6. doi:10.1109/ PCICEurope.2016.7604645.
dc.relation[12] R. Patton, J. Chen, Observer-based fault detection and isolation: Robustness and applications, Control Engineering Practice 5 (5) (1997) 671 – 682. doi:https:// doi.org/10.1016/S0967-0661(97)00049-X.
dc.relation[13] R. C. de Vries, An automated methodology for generating a fault tree, IEEE Transactions on Reliability 39 (1) (1990) 76–86. doi:10.1109/24.52615.
dc.relation[14] F. Yang, D. Xiao, Progress in root cause and fault propagation analysis of large-scale industrial processes, Journal of Control Science and Engineering, 2012doi:https://doi.org/10.1155/2012/478373.
dc.relation[15] M. H. Sarmiento, N. C. Isaza, Identification and estimation of functional states in drinking water plant based on fuzzy clustering, in: I. D. L. Bogle, M. Fairweather (Eds.), 22nd European Symposium on Computer Aided Process Engineering, Vol. 30 of Computer Aided Chemical Engineering, Elsevier, 2012, pp. 1317 – 1321. doi:https:// doi.org/10.1016/B978-0-444-59520-1.50122-6.
dc.relation[16] Y. Chen, J. Lee, Autonomous mining for alarm correlation patterns based on time-shift similarity clustering in manufacturing system, in: 2011 IEEE Conference on Prognostics and Health Management, 2011, pp. 1–8. doi:10.1109/ICPHM.2011.6024351.
dc.relation[17] A. Zolghadri, J. Cieslak, D. Efimov, D. Henry, P. Goupil, R. Dayre, A. Gheorghe, H. Leberre, Signal and model-based fault detection for aircraft systems, IFACPapersOnLine 48 (21) (2015) 1096 – 1101, 9th IFAC Symposium on Fault Detection, Super vision and Safety for Technical Processes SAFEPROCESS 2015. doi:https:// doi.org/10.1016/j.ifacol.2015.09.673.
dc.relation[18] V. John, P. Jorge, A. Carlos, J. Jos, Analysis of alarm management in startups and shutdowns for oil refining processes, in: 2013 II International Congress of Engineering Mechatronics and Automation (CIIMA), 2013, pp. 1–6. doi:10.1109/CIIMA.2013.6682784.
dc.relation[19] P. Mishra, D. R. Samartha, N. Pathak, S. K Jain, S. Banerjee, K. K Maudar, Bhopal gas tragedy: Review of clinical and experimental findings after 25 years, International journal of occupational medicine and environmental health 22 (2009) 193–202. doi:10.2478/ v10001-009 0028-1.
dc.relation[20] P. Hokstad, K. Corneliussen, Loss of safety assessment and the iec 61508 standard, Reliability Engineering System Safety 83 (1) (2004) 111 – 120. doi:https://doi.org/10.1016/j.ress.2003.09.017.
dc.relation[21] R. Brooks, R. Thorpe, J. Wilson, A new method for defining and managing process alarms and for correcting process operation when an alarm occurs, Journal of Hazardous Materials 115 (1) (2004) 169 – 174, a Collection of Papers Presented at the Annual Symposium of the Mary Kay O’Connor Process Safety Centre, Texas A and M University, College Statis, TX, United States, 28-29 October, 2003. doi:https://doi.org/10.1016/j. jhazmat.2004.05.040.
dc.relation[22] I. Izadi, S. L. Shah, D. S. Shook, T. Chen, An introduction to alarm analysis and design, IFAC Proceedings Volumes 42 (8) (2009) 645 – 650, 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes. doi:https://doi.org/10.3182/20090630-4-ES-2003.00107.
dc.relation[23] S. R. Kondaveeti, I. Izadi, S. L. Shah, D. S. Shook, R. Kadali, T. Chen, Quantification of alarm chatter based on run length distributions, Chemical Engineering Research and Design 91 (12) (2013) 2550 – 2558. doi:https://doi. org/10.1016/j.cherd.2013.02.028.
dc.relation[24] P. Urban, L. Landryov, Identification and evaluation of alarm logs from the alarm management system, in: 2016 17th International Carpathian Control Conference (ICCC), 2016, pp. 769–774. doi:10.1109/ CarpathianCC.2016.7501199.
dc.relation[25] S. D. Treville, J. Antonakis, N. M. Edelson, Can standard operating procedures be motivating? reconciling process variability issues and behavioural outcomes, Total Quality Management & Business Excellence 16 (2) (2005) 231– 241. arXiv:https://doi.org/10.1080/14783360500054236, doi: 10.1080/14783360500054236. URL https://doi. org/10.1080/14783360500054236
dc.relation[26] S. Sklet, Safety barriers: Definition, classification, and performance, Journal of Loss Prevention in the Process Industries 19 (5) (2006) 494 – 506. doi:https:// doi.org/10.1016/j.jlp.2005.12.004.
dc.relation[27] A. M. Dowell III, Layer of protection analysis and inherently safer processes, Process Safety Progress 18 (4) 214–220. arXiv:https://aiche.onlinelibrary.wiley. com/doi/pdf/10.1002/prs.680180409, doi:10.1002/ prs.680180409.
dc.relation[28] J. M. Koscielny, M. Bartys, The requirements for a new layer in the industrial safety systems, IFACPapersOnLine 48 (21) (2015) 1333 – 1338, 9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2015. doi:https:// doi.org/10.1016/j.ifacol.2015.09.710.
dc.relation[29] R. Isermann, Model-based fault-detection and diagnosis status and applications, Annual Reviews in Control 29 (1) (2005) 71 – 85. doi:https://doi.org/10.1016/j. arcontrol.2004.12.002.
dc.relation[30] R. Isermann, On the applicability of model-based fault detection for technical processes, Control Engineering Practice 2 (3) (1994) 439 – 450. doi:https:// doi.org/10.1016/0967-0661(94)90781-1.
dc.relation[31] M. Bayoudh, L. Trav´e-Massuy`es, X. Olive, Hybrid systems diagnosis by coupling continuous and discrete event techniques, IFAC Proceedings Volumes 41 (2) (2008) 7265 – 7270, 17th IFAC World Congress. doi:https://doi.org/10.3182/20080706-5-KR-1001.01229.
dc.relation[32] Z. Gao, C. Cecati, S. X. Ding, A survey of fault diagnosis and fault tolerant techniquespart i: Fault diagnosis with model-based and signal based approaches, IEEE Transactions on Industrial Electronics 62 (6) (2015) 3757–3767. doi:10.1109/TIE.2015.2417501.
dc.relation[33] A. Subias, L. Travé-Massuyès, E. L. Corronc, Learning chronicles signing multiple scenario instances, IFAC Proceedings Volumes 47 (3) (2014) 10397 – 10402, 19th IFAC World Congress. doi:https://doi. org/10.3182/20140824-6-ZA-1003.02579.
dc.relation[34] D. Beebe, S. Ferrer, D. Logerot, The connection of peak alarm rates to plant incidents and what you can do to minimize, Process Safety Progress 32 (1) 72–77. arXiv:https://aiche.onlinelibrary.wiley.com/doi/ pdf/10.1002/prs.11539, doi:10.1002/prs.11539.
dc.relation[35] J. Zhu, Y. Shu, J. Zhao, F. Yang, A dynamic alarm management strategy for chemical process transitions, Journal of Loss Prevention in the Process Industries 30 (2014) 207 – 218. doi:https://doi.org/10.1016/j. jlp.2013.07.008.
dc.relation[36] J. Vásquez, A. Subias, L. Travé-Massuyès, F. Jimenez, Alarm management via temporal pattern learning, Engineering Applications of Artificial Intelligence 65 (2017) 506 – 516. doi:https://doi.org/10.1016/j. engappai.2017.07.008.
dc.relation[37] J. Vásquez, L. Travé-Massuyès, A. Subias, F. Jimenez, Enhanced chronicle learning for process supervision, IFAC-PapersOnLine 50 (1) (2017) 5035 – 5040, 20th IFAC World Congress. doi:https://doi.org/10.1016/j. ifacol.2017.08.924.
dc.relation[38] J. W. Vásquez, L. Travé-Massuyès, A. Subias, F. Jiménez, C. Agudelo, Chronicle based alarm management in startup and shutdown stages, in: 26th International Workshop on Principles of Diagnosis, Paris, France, 2015, pp. 277–280. URL https://hal.laas.fr/hal-01847469
dc.relation[39] J. Vásquez, L. Travé-Massuyès, A. Subias, F. Jimenez, C. Agudelo, Alarm management based on diagnosis, IFAC PapersOnLine 49 (5) (2016) 126 – 131, 4th IFAC Conference on Intelligent Control and Automation SciencesICONS 2016. doi:https://doi.org/10.1016/j. ifacol.2016.07.101.
dc.relation[40] M. odile Cordier, C. Dousson, Alarm driven monitoring based on chronicles, IFAC Proceedings Volumes 33 (11) (2000) 291 – 296, 4th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes 2000 (SAFEPROCESS 2000), Budapest, Hungary, 14-16 June 2000. doi: https://doi.org/10.1016/ S1474-6670(17)37375-5.
dc.relation[41] R. Pons, A. Subias, L. Travé-Massuyes, Iterative hybrid causal model based diagnosis: Application to automotive embedded functions, Engineering Applications of Artificial Intelligence 37 (2015) 319 – 335. doi:https://doi.org/10.1016/j.engappai.2014.09.016.
dc.relation[42] Schleburg, M., Christiansen, L., Thornhill, N. F., and Fay, A. (2014). A combined anal-ysis of plant connectivity and alarm logs to reduce the number of alerts in an automation system. Journal of Process Control, Vol 23, pp. 839–851.
dc.relation[43]Sandeep, R., Kondaveeti, R., Izadi, I., Shaha, S. L., Black, T., and Chen, T. (2014). Graphical tools for routine assessment of industrial alarm systems. Computers & Chemical Engineering,Vol 46, pp. 39–47.
dc.relation[44] Higuchi, F., Yamamoto, I., T. Takai, M. N., and Nishitani, H. (2014). Use of event correlation analysis to reduce number of alarms. Computers & Chemical Engineering, Vol 27, pp. 1521–1526.
dc.relation[45] Ge, Z. and Song, Z. (2009). Multimode process monitoring based on Bayesian method. Journal of Chemometrics, Vol 23, pp. 636–650.
dc.relation[46]Liu, X., Noda, M., and Nishitani, H. (2010). Evaluation of plant alarm systems by behavior simulation using a virtual subject. Computers & Chemical Engineering, Vol 34, pp. 374–386.
dc.relation[47]Yang, F., Shah, S. L., Xiao, D., and Chen, T. (2011). Improved correlation analysis and visualization of industrial alarm data. 18th IFAC World Congress Milano, Italy.
dc.relation[48]Izadi, I., S.L. Shah, a. D. S., Kondaveeti, S., and Chen, T. (2009). A framework for optimal design of alarm systems. 7th IFAC Symposium on fault detection, supervision and safety of technical processes, Barcelona, Spain.
dc.relation[49]Pariyani, A., Seider, W., Oktem, U., and Soroush, M. (2012). Dynamic risk analysis using alarm databases to improve process safety and product quality: Part ii bayesian analysis. AIChE Journal, Vol. 58, pp. 826–841.
dc.relation[50]Liu, J. and Chen, D. (2010). Non stationary fault detection and diagnosis for multimode processes. AIChE Journal, Vol. 56, pp. 207–219.
dc.relation[51]Zhu, J., Shu, Y., Zhao, J., and Yang, F. (2013). A dynamic alarm management strategy for chemical process transitions. Journal of Loss Prevention in the Process Industries.
dc.relation[52]Jing, Z., Boang, L., and Hao, Y. (2013). Fault diagnosis strategy for startup process based on standard operating procedures. 25th Chinese Control and Decision Conference (CCDC).
dc.relation[53]Duan, P., Yang, F., Chen, T., and Shah., S. (2013). Direct causality detection via the transfer entropy approach. IEEE Transactions of control system technology, Vol. 21, No. 6.
dc.relation[54]Yang, F. and Xiao, D. (2012). Progress in root cause and fault propagation analysis of large scale industrial processes. Journal of Control Science and Engineering.
dc.relation[55]Srinivasan, R., Viswanathan, P., Vedam, H., and Nochur, A. (2005). A framework for managing transitions in chemical plants. Computers & Chemical Engineering, Vol. 29, pp. 305–322.
dc.relation[56]Xu, S., Adhitya, A., and Srinivasan, R. (2013). Hybrid model-based framework for alarm anticipation. Industrial & Engineering Chemistry Research, Vol. 53, pp. 5182–5193
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectAlarm management
dc.subjectProtection layers
dc.subjectSafe process
dc.subjectDiagnosis
dc.subjectSuper-alarm
dc.subjectGestión de alarmas
dc.subjectCapas de protección
dc.subjectProcesos de seguridad
dc.subjectDiagnóstico
dc.subjectSuper-alarma
dc.titleAn additional layer of protection through superalarms with diagnosis capability
dc.titleUna nueva capa de protección a través de súper alarmas con capacidad de diagnóstico
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución