dc.creator | Herrera Vidal, Germán | |
dc.creator | Coronado-Hernandez, Jairo R. | |
dc.creator | Minnaard, Claudia | |
dc.date | 2022-05-25T22:24:26Z | |
dc.date | 2022-10-10 | |
dc.date | 2022-05-25T22:24:26Z | |
dc.date | 2021-10-08 | |
dc.date.accessioned | 2023-10-03T20:00:11Z | |
dc.date.available | 2023-10-03T20:00:11Z | |
dc.identifier | Vidal, G.H., Hernández, J.R.C. & Minnaard, C. Modeling and statistical analysis of complexity in manufacturing systems under flow shop and hybrid environments. Int J Adv Manuf Technol 118, 3049–3058 (2022). https://doi.org/10.1007/s00170-021-08028-9 | |
dc.identifier | 268-3768 | |
dc.identifier | https://hdl.handle.net/11323/9193 | |
dc.identifier | https://doi.org/10.1007/s00170-021-08028-9 | |
dc.identifier | 10.1007/s00170-021-08028-9 | |
dc.identifier | 1433-3015 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9173755 | |
dc.description | In manufacturing systems, there are environments where the elaboration of a product requires a series of sequential operations, involving the configuration of machines by stages, intermediate buffer capacities, definition of assembly lines, and routing of parts. The objective of this research is to develop a modeling and statistical analysis of complexity in manufacturing systems under flow shop and hybrid environments. The methodological approach starts with the structural modeling, then the measurement of the complexity in the systems is developed, the hypotheses are proposed, and finally an experimental and factorial statistical analysis is developed. The results obtained corroborate the hypotheses proposed, where statistically the structural design factors and the variation of production time per stage have a significant influence on the response variable associated to the total complexity. Similarly, there is evidence of correlation between the performance indicators and the variable studied, in which the incidence with production costs stands out. | |
dc.format | 1 página | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Springer London | |
dc.publisher | United Kingdom | |
dc.relation | International Journal of Advanced Manufacturing Technology | |
dc.relation | 1. Quirk M (1999) Manufacturing, teams, and improvement: the human art of manufacturing. Prentice-Hall | |
dc.relation | 2. Sánchez GV (2006) Introducción a la teoría económica un enfoque latinoamericano. Pearson educación | |
dc.relation | 3. Gaio L, Gino F, Zaninotto E (2002) I sistemi di produzione: manuale per la gestione operativa dell’impresa. Carocci | |
dc.relation | 4. Frizelle G, Woodcock E (1995) Measuring complexity as an aid to developing operational strategy. Int J Oper Prod Manag. https://doi.org/10.1108/01443579510083640 | |
dc.relation | 5. Scholl A (1999) Balancing and sequencing of assembly lines (No. 10881). Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL) | |
dc.relation | 6. Vidal GH, Hernández JRC (2021) Complexity in manufacturing systems: a literature review. Production Engineering, 1–13 | |
dc.relation | 7. Deshmukh AV, Talavage JJ, Barash MM (1998) Complexity in manufacturing systems, Part 1: Analysis of static complexity. IIE Trans 30(7):645–655 | |
dc.relation | 8. Manuj I, Sahin F (2011) A model of supply chain and supply chain decision-making complexity. International Journal of Physical Distribution & Logistics Management | |
dc.relation | 9. Papakostas N, Papachatzakis P, Xanthakis V, Mourtzis D, Chryssolouris G (2010) An approach to operational aircraft maintenance planning. Decis Support Syst 48(4):604–612 | |
dc.relation | 10. Herbert S (1962) The architecture of complexity. Proc Am Philos Soc 106(6):467–482 | |
dc.relation | 11. Flynn BB, Flynn EJ (1999) Information-processing alternatives for coping with manufacturing environment complexity. Decis Sci 30(4):1021–1052 | |
dc.relation | 12. Garbie IH, Shikdar A (2011) Analysis and estimation of complexity level in industrial firms. Int J Ind Syst Eng 8(2):175–197 | |
dc.relation | 13. Calinescu A, Efstathiou J, Bermejo J, Schirn J (1997) Modelling and simulation of a real complex process-based manufacturing system. In Proceedings of the Thirty-Second International Matador Conference (pp. 137–142). Palgrave, London | |
dc.relation | 14. Calinescu A, Efstathiou J, Bermejo J, Schirn J (1997) Assessing decision-making and process complexity in a manufacturer through simulation. IFAC Proceedings Volumes 30(24):149–152 | |
dc.relation | 15. Almasarwah N, Süer G (2019) Flexible flowshop design in cellular manufacturing systems. Procedia Manufacturing 39:991–1001 | |
dc.relation | 16. Kurz ME, Askin RG (2003) Comparing scheduling rules for flexible flow lines. Int J Prod Econ 85(3):371–388 | |
dc.relation | 17. Quadt D, Kuhn H (2007) A taxonomy of flexible flow line scheduling procedures. Eur J Oper Res 178(3):686–698 | |
dc.relation | 18. Bouras A, Masmoudi M, Saadani NEH, Bahroun Z (2017) A three-stage appointment scheduling for an outpatient chemotherapy unit using integer programming. In 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT) (pp. 0916–0921). IEEE | |
dc.relation | 19. Guinet AGP, Solomon M (1996) Scheduling hybrid flowshops to minimize maximum tardiness or maximum completion time. Int J Prod Res 34(6):1643–1654 | |
dc.relation | 20. Ho MH, Hnaien F, Dugardin F (2021) Electricity cost minimisation for optimal makespan solution in flow shop scheduling under time-of-use tariffs. Int J Prod Res 59(4):1041–1067 | |
dc.relation | 21. Yan J, Li L, Zhao F, Zhang F, Zhao Q (2016) A multi-level optimization approach for energy-efficient flexible flow shop scheduling. J Clean Prod 137:1543–1552 | |
dc.relation | 22. Dai M, Tang D, Giret A, Salido MA, Li WD (2013) Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing 29(5):418–429 | |
dc.relation | 23. Marichelvam MK, Geetha M, Tosun Ö (2020) An improved particle swarm optimization algorithm to solve hybrid flowshop scheduling problems with the effect of human factors-a case study. Comput Oper Res 114:104812 | |
dc.relation | 24. Agnetis A, Pacifici A, Rossi F, Lucertini M, Nicoletti S, Nicolo F, Oriolo G, Pacciarelli D, Pesaro E (1997) Scheduling of flexible flow lines in an automobile assembly plant. Eur J Oper Res 97:348–362 | |
dc.relation | 25. Tsubone H, Ohba M, Takamuki H, Miyake Y (1993) A production scheduling system for a hybrid flow shop-a case study. Omega 21(2):205–214 | |
dc.relation | 26. Alisantoso D, Khoo LP, Jiang PY (2003) An immune algorithm approach to the scheduling of a flexible PCB flow shop. Int J Advanced Manufacturing Technol 22(11):819–827 | |
dc.relation | 27. Piramuthu S, Raman N, Shaw MJ (1994) Learning-based scheduling in a flexible manufacturing flow line. IEEE Trans Eng Manage 41(2):172–182 | |
dc.relation | 28. Wang S, Wang X, Chu F, Yu J (2020) An energy-efficient two-stage hybrid flow shop scheduling problem in a glass production. Int J Prod Res 58(8):2283–2314 | |
dc.relation | 29. Liu M, Yang X, Zhang J, Chu C (2017) Scheduling a tempered glass manufacturing system: a three-stage hybrid flow shop model. Int J Prod Res 55(20):6084–6107 | |
dc.relation | 30. Leon VJ, Ramamoorthy B (1997) An adaptive problemspace-based search method for flexible flow line scheduling. IIE Trans 29:115–125 | |
dc.relation | 31. Rahmani D, Ramezanian R (2016) A stable reactive approach in dynamic flexible flow shop scheduling with unexpected disruptions: a case study. Comput Ind Eng 98:360–372 | |
dc.relation | 32. Riane F (1998) Scheduling hybrid flowshops: algorithms and applications. Ph.D. Thesis, Faculte’s Universitaires Catholiques de Mons | |
dc.relation | 33. Salvador MS (1973) A solution to a special class of flow shop scheduling problems. In: Elmaghraby SE (ed) Symposium on the Theory of Scheduling and Its Applications. Springer, Berlin, pp 83–91 | |
dc.relation | 34. Quadt D, Kuhn H (2005) A conceptual framework for lotsizing and scheduling of flexible flow lines. Int J Prod Res 43(11):2291–2308 | |
dc.relation | 35. Wittrock RJ (1988) An adaptive scheduling algorithm for flexible flow lines. Oper Res 36(4):445–453 | |
dc.relation | 36. Shannon CE (1948) A mathematical theory of communication. Bell syst technic J 27(3):379–423 | |
dc.relation | 37. Calinescu A (2000) Complexity in manufacturing: an information theoretic approach. In Conference on complexity and complex systems in industry, 19–20 Sept 2000 (pp. 19–20). University of Warwick | |
dc.relation | 38. Chedid JA, Vidal GH (2012) Análisis del Problema de Planificación de la Producción en Cadenas de Suministro Colaborativas: Una Revisión de la Literatura en el Enfoque de Teoría de Juegos. | |
dc.relation | 39. Bozarth CC, Warsing DP, Flynn BB, Flynn EJ (2009) The impact of supply chain complexity on manufacturing plant performance. J Oper Manag 27(1):78–93 | |
dc.relation | 40. MacDuffie JP, Sethuraman K, Fisher ML (1996) Product variety and manufacturing performance: evidence from the international automotive assembly plant study. Manage Sci 42(3):350–369 | |
dc.relation | 41. Wu Y, Frizelle G, Efstathiou J (2007) A study on the cost of operational complexity in customer–supplier systems. Int J Prod Econ 106(1):217–229 | |
dc.relation | 42. Sivadasan S, Efstathiou J, Calinescu A, Huatuco LH (2006) Advances on measuring the operational complexity of supplier–customer systems. Eur J Oper Res 171(1):208–226 | |
dc.relation | 43. Orfi N, Terpenny J, Sahin-Sariisik A (2011) “Harnessing product complexity: Step 1 - establishing product complexity dimensions and indicators”. Eng Econ:9–79 | |
dc.relation | 44. Coronado Hernández JR (2016) Análisis del efecto de algunos factores de complejidad e incertidumbre en el rendimiento de las Cadenas de Suministro. Propuesta de una herramienta de valoración basada en simulación (Doctoral dissertation) | |
dc.relation | 45. Efthymiou K, Pagoropoulos A, Papakostas N, Mourtzis D, Chryssolouris G (2014) Manufacturing systems complexity: An assessment of manufacturing performance indicators unpredictability. CIRP J Manuf Sci Technol 7(4):324–334 | |
dc.relation | 3058 | |
dc.relation | 3049 | |
dc.rights | © 2022 Springer Nature Switzerland AG. Part of Springer Nature. | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.source | https://link.springer.com/article/10.1007/s00170-021-08028-9 | |
dc.subject | Complexity | |
dc.subject | Manufacturing systems | |
dc.subject | Flow shop and hybrid | |
dc.subject | Modeling | |
dc.subject | Statistical analysis | |
dc.title | Modeling and statistical analysis of complexity in manufacturing systems under flow shop and hybrid environments | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/draft | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |