El nitrógeno líquido como promotor de la germinación de las semillas y del crecimiento de las plántulas en las leguminosas tropicales

dc.creatorAcosta Fernández, Yanier
dc.creatorFontes Marrero, Dayami
dc.creatorMartinez-Montero, Marcos Edel
dc.date2023-05-24T22:25:31Z
dc.date2023-05-24T22:25:31Z
dc.date2021
dc.date.accessioned2023-10-03T20:00:11Z
dc.date.available2023-10-03T20:00:11Z
dc.identifierY. Acosta Fernández, D. Fontes Marrero & M. E. Martínez-Montero, “Liquid Nitrogen as promotor of seeds germination and seedling growth in tropical legumes”, INGE CUC, vol. 17, no. 2, pp. 1–10. DOI: http://doi.org/10.17981/ingecuc.17.2.2021.01
dc.identifier0122-6517
dc.identifierhttps://hdl.handle.net/11323/10177
dc.identifier10.17981/ingecuc.17.2.2021.01
dc.identifier2382-4700
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC – Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173754
dc.descriptionIntroduction— The hard seed is the main cause of dormancy in most of the Leguminoseae species. Seed scarification methods, where physical damage is sought to break hard seed coat without diminishing quality, have been modified over time to make them more effective. The most commonly used seed scarification methods include heat, mechanical scarification, and freeze-thaw. Some methods for freeze-thaw scarification include ultra-low temperature immersion in Liquid Nitrogen (LN, –196°C). Objective— Determine the effectiveness use of Liquid Nitrogen (LN) as a scarification method to overcome dormancy in seeds of species of the Leguminoseae family. Methodology— The physiological quality of all freshly harvested seeds was determined and scarified by direct immersion in LN for 30 minutes. Total germination was determined under laboratory conditions, as well as the time required for the seeds to reach 50% germination (T50) and the total number of seeds that remained hard at the end of the experiment. The percentage of emerged seedlings and their vegetative growth was evaluated for 21 days after sowing. Results— The seeds of all species evaluated showed a high physiological quality at the time of harvest. Scarification with LN improved germination, emergence and vegetative growth in the species Desmodium scorpiorus, Teramnus labialis, Neonotonia wigthii and Phueraria phaseoloides. Conclusions— Dormancy was effectively overcome in the seeds of the species D. scorpiorus, T. labialis, N. wigthii and P. phaseoloides. It was possible to increase the percentage and speed of germination and emergence, managing to obtain plants with greater vegetative growth during the first 21 days after sowing.
dc.descriptionIntroducción— La semilla dura es la principal causa de latencia en la mayoría de las especies de Leguminoseae. Los métodos de escarificación de la semilla, en los que se busca un daño físico para romper la cubierta dura de la semilla sin disminuir su calidad, se han modificado a lo largo del tiempo para hacerlos más efectivos. Los métodos de escarificación de semillas más utilizados son el calor, la escarificación mecánica y la congelación-descongelación. Algunos métodos de escarificación por congelación-descongelación incluyen la inmersión a muy baja temperatura en Nitrógeno Líquido (LN, –196°C). Objetivo— Determinar la efectividad del uso de Nitrógeno Líquido (LN) como método de escarificación para superar la latencia en semillas de especies de la familia Leguminoseae. Metodología— Se determinó la calidad fisiológica de todas las semillas recién cosechadas y se escarificaron por inmersión directa en LN durante 30 minutos. Se determinó la germinación total en condiciones de laboratorio, así como el tiempo necesario para que las semillas alcanzaran el 50% de germinación (T50) y el número total de semillas que permanecieron duras al final del experimento. Se evaluó el porcentaje de plántulas emergidas y su crecimiento vegetativo durante 21 días después de la siembra. Resultados— Las semillas de todas las especies evaluadas mostraron una alta calidad fisiológica en el momento de la cosecha. La escarificación con LN mejoró la germinación, emergencia y crecimiento vegetativo en las especies Desmodium scorpiorus, Teramnus labialis, Neonotonia wigthii y Phueraria phaseoloides. Conclusiones— La dormancia fue superada efectivamente en las semillas de las especies D. scorpiorus, T. labialis, N. wigthii y P. phaseoloides. Se logró aumentar el porcentaje y la velocidad de germinación y emergencia, logrando obtener plantas con mayor crecimiento vegetativo durante los primeros 21 días después de la siembra.
dc.format10
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.publisherColombia
dc.relationINGE CUC
dc.relation[1] E. Kimura & M. A. Islam, “Seed scarification methods and their use in forage legumes,” Res J Seed Sci, vol. 5, no. 2, pp. 38–50, Feb. 2012. https://doi.org/10.3923/rjss.2012.38.50
dc.relation[2] N. Azani, M. Babineau, C. D. Bailey, H. Banks, A. R. Barbosa, R. Barbosa, J. S. Boatwright, L. M. Borges, G. K. Brown, A. Bruneau et al., “A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny – The Legume Phylogeny Working Group (LPWG),” Taxon, vol. 66, no. 1, pp. 44–77, Feb. 2017. https://doi.org/10.12705/661.3
dc.relation[3] A. Díaz, E. Castillo, P. C. Martín & J. L. Hernández, “Pre-fattening of crossbred dairy bulls under grazing with glycine (Neonotonia wightii) and tropical grasses with rumen activator supplement,” Cuba J Agric Sci, vol. 47, no. 1, pp. 23–26, 2013. Available: http://cjascience.com/index.php/CJAS/ article/view/250
dc.relation[4] C. A. Mazorra-Calero, D. Fontes-Marrero, L. H. Donis-García, J. Martínez-Melo, Y. Acosta-Fernández, I. Espinosa-Alemán, C. Lavinge, P. Fernandes & A. González-Morales, “Diagnóstico tecnológico y socioeconómico del establecimiento de Psidium guajava L. y Teramnus labialis en Ciego de Ávila, Cuba,” Past y forr, vol. 39, no. 4, pp. 259–264, 2016. Disponible en https://payfo.ihatuey.cu/index.php ?journal=pasto&page=article&op=view&path%5B%5D=1919
dc.relation[5] F. Llamas & C. Acedo, “Las leguminosas (Leguminosae o Fabaceae): una síntesis de las clasificaciones, taxonomía y filogenia de la familia a lo largo del tiempo,” Ambioc, vol. 14, pp. 5–18, 2016. https:// doi.org/10.18002/ambioc.v0i14.5542
dc.relation[6] D. Fontes, R. Machado, N. Cubillas, C. Mazorra, A. Borroto, L. Pulido, Y. Lezcano, N. Hernández & J. Martínez. , “Selección de leguminosas herbáceas para el fomento de cobertura en plantaciones de naranja Valencia late,” Past y forr, vol. 32, no. 1, pp. 1–11, Mar. 2009. Disponible en https://payfo. ihatuey.cu/index.php?journal=pasto&page=article&op=view&path%5B%5D=655
dc.relation[7] E. Can & N. Çelikta, “Breaking seed dormancy of some annual Medicago and Trifolium species by different treatments,” Turkish J Field Crops, vol. 14, no. 2, pp. 72–78, 2009. https://doi.org/10.17557/ TJFC.23426
dc.relation[8] C. Patanè & F. Gresta, “Germination of Astragalus hamosus and Medicago orbicularis as affected by seed-coat dormancy breaking techniques,” J Arid Env, vol. 67, no. 1, pp. 165–173, Oct. 2006. https:// doi.org/10.1016/j.jaridenv.2006.02.001
dc.relation[9] B. M. Reed, “Plant cryopreservation: a continuing requirement for food and ecosystem security,” In Vitro Cell Dev Biol-Plant, vol. 53, no. 4, pp. 285–288, Ago. 2017. https://doi.org/10.1007/s11627-017- 9851-4
dc.relation[10] B. M. Reed,Cryopreservation of orthodox (Desiccation Tolerant) seeds, H. W. Pritchard & J. Nadarajan,Plant Cryopreservation: A Practical Guide. NY, USA: Springer, pp. 485–501, 2008. https:// doi.org/10.1007/978-0-387-72276-4_19
dc.relation[11] C. C. Baskin & J. M. Baskin, “Seeds: ecology, biogeography, and evolution of dormancy and germination, 2 Ed., AMS, NL: Elsevier/AP, 2014. https://doi.org/10.1016/C2013-0-00597-X
dc.relation[12] H. W. Pritchard, K. R. Manger & F. G. Prendergast, “Changes in Trifolium arvense seed quality following alternating temperature treatment using Liquid nitrogen,” AOB, vol. 62, no. 1, pp. 1–11, Jul. 1988. https://doi.org/10.1093/oxfordjournals.aob.a087626
dc.relation[13] L. W. Zeng, P. S. Cocks, S. G. Kailis & J. Kuo, “The role of fractures and lipids in the seed coat in the loss of hardseededness of six Mediterranean legume species,” J Agric Sci, vol. 143, no. 1, pp. 43–55, Jun. 2005. https://doi.org/10.1017/S0021859605005034
dc.relation[14] X. W. Hu, Y. R. Wang, Y. P. Wu & C. C. Baskin, “Role of the lens in controlling water uptake in seeds of two Fabaceae ( Papilionoideae ) species treated with sulphuric acid and hot water,” Seed Sci Res, vol. 19, no. 2, pp. 73–80, 1 Jun. 2009. https://doi.org/10.1017/S0960258509301099
dc.relation[15] N. M. Voronkova & A. B. Kholina, “Conservation of endemic species from the Russian far east using seed cryopreservation,” Biol Bull, vol. 37, no. 5, pp. 496–501, Oct. 2010. https://doi.org/10.1134/ S1062359010050092
dc.relation[16] R. F. García, “Determination of the stability of the ethanol mixture with naphtha through the measurement of his dielectric and refractometric properties,” INGE CUC, vol. 16, no. 2, pp. 141–150, 2020. https://doi.org/10.17981/ingecuc.16.2.2020.10
dc.relation[17] M. Altare, S. Trione, J. C. Guevara & M. Cony, “Stimulation and promotion of germination in Opuntia ficus-indica seeds,” J Prof Assoc Cactus Dev, vol. 8, pp. 91–100, 2006. Available: https://www.jpacd. org/jpacd/article/view/281
dc.relation[18] M. A. Maldonado-Peralta, G. De Los Santos, J. R. García-Nava, C. Ramírez-Herrera, A. HernándezLivera, J. M. Valdez-Carrazco, T. Corona-Torres & V. M. Cetina-Alcalá, “Seed viability and vigour of two nanche species (Malpighia mexicana and Byrsonima crassifolia),” Seed Sci Technol, vol. 44, no. 1, pp. 168–176, Abr. 2016. https://doi.org/10.15258/sst.2016.44.1.03
dc.relation[19] Y. Acosta, Lianny Pérez, C. Linares, L. Hernández, D. Escalante, A. Pérez, B. E. Zevallos, L. Yabor, M. E. Martínez-Montero, I. Cejas, D. Fontes, Sershen & J. C. Lorenzo, “Effects of Teramnus labialis (L.f.) Spreng seed cryopreservation on subsequent seed and seedling growth and biochemistry,” Acta Physiol Plant, vol. 42, no. 1, pp. 1–7, Jan. 2020. https://doi.org/10.1007/s11738-020-3012-9
dc.relation[20] Y. Acosta, L. Hernandez, C. Mazorra, N. Quintana, B. E. Zevallos, I. Cejas, EmptyYN Y Sershen, J. C. Lorenzo, M. E. Martínez-Montero & D. Fontes, “Seed cryostorage enhances subsequent plant productivity in the forraje species Teramnus labialis (L.f.) Spreng,” Cryo, vol. 40, no. 1, pp. 36–43, Jan. 2019. Available: https://pubmed.ncbi.nlm.nih.gov/30955029/
dc.relation[21] E. Enriquez-Peña, H. Suzán-Azpiri & G. Malda-Barrera, “Viabilidad y germinación de semillas de Taxodium mucronatum (Ten.) en el estado de Querétaro, México,” Agrocienc, vol. 38, no. 3, pp. 375–381, 2004. Available: https://agrociencia-colpos.mx/index.php/agrociencia/article/view/329
dc.relation[22] G. K. Jaganathan, K. J. Yule & M. Biddick, “Determination of the water gap and the germination ecology of Adenanthera pavonina (Fabaceae, Mimosoideae); the adaptive role of physical dormancy in mimetic seeds,” AoB PLANTS, vol. 10, no. 5, pp. 1–11, Oct. 2018. https://doi.org/10.1093/aobpla/ ply048
dc.relation[23] M. T. Gonzalez-Arnao & F. Engelmann,. Crioconservación de plantas en América Latina y el Caribe, SJ, CR: IICA, 2013. Available: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers14-02/010060280.pdf
dc.relation[24] S. N. Acharya, D. G. Stout, B. Brooke & D. Thompson, “Cultivar and storage effects on germination and hard seed content of alfalfa,” Can J Plant Sci, vol. 79, no. 2, pp. 201–208, Apr. 1999. https://doi. org/10.4141/P98-043
dc.relation[25] H. W. M. Hilhorst, “Standardizing Seed Dormancy Research,” Seed Dormancy, vol. 773, pp. 43–52, Jul. 2011. https://doi.org/10.1007/978-1-61779-231-1_3
dc.relation[26] A. E. Ferreras, S. R. Zeballos & G. Funes, “Inter- and intra-population variability in physical dormancy along a precipitation gradient,” Acta Bot Bras, vol. 31, no. 1, pp. 141–146, 2017. https://doi. org/10.1590/0102-33062016abb0406
dc.relation[27] Y. Acosta, L. Pérez, D. Escalante, L. Nápoles, O. Concepción, A. Pérez, L. S. Pérez, M. E. MartínezMontero, D. Fontes, Sershen & J. C. Lorenzo, “Dormancy breaking in Teramnus labialis (L.f.) Spreng seeds through liquid nitrogen exposure is based on the modification of the hilar region, cuticle, and macrosclereid,” Acta Physiol Plant, vol. 42, no. 9, pp. 1–7, Sep. 2020. https://doi.org/10.1007/s11738- 020-03134-9
dc.relation[28] J. D. Bewley, K. J. Bradford, H. W. M. Hilhorst & H. Nonogaki,. Synthesis of Storage Reserves. NY, USA: Springer, pp. 85–131, 2013. https://doi.org/10.1007/978-1-4614-4693-4_3
dc.relation[29] F. Alane, R. Chabaca, L. Ouafi, M. Abdelguerfi-laouar & A. Abdelguerfi, “Break dormancy, germination capacity of medics after different techniques of scarification (Physical, Chemical and Mechanical),” AJAR, vol. 11, no. 5, pp. 340–351, Feb. 2016. https://doi.org/10.5897/AJAR2015.10303
dc.relation[30] F. Pérez-García, “Effect of cryopreservation, gibberellic acid and mechanical scarification on the seed germination of eight endemic species from the Canary Islands,” Seed Sci Technol, vol. 36, no. 1, pp. 237–242, Apr. 2008. https://doi.org/10.15258/sst.2008.36.1.29
dc.relation[31] S. Jastrzębowski, J. Ukalska, W. Kantorowicz, M. Klisz, T. Wojda & M. Sułkowska, “Effects of thermal-time artificial scarification on the germination dynamics of black locust (Robinia pseudoacacia L.) seeds,” Eur J Forest Res, vol. 136, no. 3, pp. 471–479, Jun. 2017. https://doi.org/10.1007/s10342-017- 1046-3
dc.relation[32] I. Martin & C. De la Cuadra, “Evaluation of different scarification methods to remove hardseededness in Trifolium subterraneum and Medicago polymorpha accessions of the Spanish base genebank,” Seed Sci Technol, vol. 32, no. 3, pp. 671–681, Oct. 2004. https://doi.org/10.15258/sst.2004.32.3.03
dc.relation[33] K. Endoh, M. Matsushita, M. K. Kimura, S. Hanaoka, Y. Kurita, E. Hanawa, S. Kinoshita, N. Abe, H. Yamada & M. Ubukata, “Cryopreservation of Fagus crenata seeds: estimation of optimum moisture content for maintenance of seed viability by Bayesian modeling,” Can J For Res, vol. 48, no. 2, pp. 192–196, Feb. 2018. https://doi.org/10.1139/cjfr-2017-0286
dc.relation[34] S. Mira, A. Arnal & F. Pérez-García, “Seed germination of Phillyrea angustifolia L., a species of difficult propagation,” FS, vol. 26, no. 1, pp. 1–10, May. 2017. https://doi.org/10.5424/fs/2017261-10216
dc.relation[35] M. Navarro, “Desempeño fisiológico de las semillas de árboles leguminosos de uso múltiple en el trópico,” Pastos y Forrajes, vol. 26, no. 2, pp. 97–114, 2003. Available: https://payfo.ihatuey.cu/index.php ?journal=pasto&page=article&op=view&path%5B%5D=831
dc.relation[36] Y. Acosta, F. Santiago, D. Escalante, C. Mazorra, I. Cejas, M. E. Martínez-Montero, A. Escobar, Sershen, E. Hajari, J. C. Lorenzo & D. Fontes, “Cryo-exposure of Neonotonia wightii Wigth and Am seeds enhances field performance of plants,” Acta Physiol Plant, vol. 42, no. 1, pp. 1–6, Ene. 2020. https:// doi.org/10.1007/s11738-019-3010-y
dc.relation[37] M. Navarro, G. Febles & V. Torres, “Utilization of the index of efficiency for estimating the influence of seed vigor on growth and seedling development,” Cuba J Agric Sci, vol. 50, no. 4, pp. 593–605, 2016. Available: https://www.cjascience.com/index.php/CJAS/article/view/664
dc.relation[38] M. Santorum, L. H. P. Nóbrega, E. G. de Souza, D. D. Santos, W. Boller & M. M. Mauli, “Comparison of tests for the analysis of vigor and viability in soybean seeds and their relationship to field emergence,” Acta Sci Agron, vol. 35, no. 1, pp. 83–92, Dic. 2013. https://doi.org/10.4025/actasciagron.v35i1.14955
dc.relation[39] F. Forcella, R. L. Benech Arnold, R. Sanchez & C. M. Ghersa, “Modeling seedling emergence,” Field Crops Res, vol. 67, no. 2, pp. 123–139, Jul. 2000. https://doi.org/10.1016/S0378-4290(00)00088-5
dc.relation[40] SPSS. (version 12.0). IBM [Online]. Available: https://www.ibm.com/mx-es/analytics/spss-statistics-software
dc.relation10
dc.relation1
dc.relation2
dc.relation17
dc.rightsDerechos de autor 2021 INGE CUC
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/3312
dc.subjectLegumes
dc.subjectSeed dormancy
dc.subjectGermination
dc.subjectLiquid nitrogen
dc.subjectLeguminosas
dc.subjectLatencia de semillas
dc.subjectGerminación
dc.subjectNitrógeno líquido
dc.titleLiquid Nitrogen as promotor of seeds germination and seedling growth in tropical legumes
dc.titleEl nitrógeno líquido como promotor de la germinación de las semillas y del crecimiento de las plántulas en las leguminosas tropicales
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución