dc.relation | 1. Fadiran, G.; Adebusuyi, A.T.; Fadiran, D. Natural gas consumption, and economic growth: Evidence from
selected natural gas vehicle markets in Europe. Energy 2019, 169, 467–477. [CrossRef]
2. Feijoo, F.; Iyer, G.C.; Avraam, C.; Siddiqui, S.A.; Clarke, L.E.; Sankaranarayanan, S.; Binsted, M.T.; Patel, P.L.;
Prates, N.C.; Torres-Alfaro, E.; et al. The future of natural gas infrastructure development in the United
states. Appl. Energy 2018, 228, 149–166. [CrossRef]
3. Wang, X.; Shu, G.; Tian, H.; Liu, P.; Jing, D.; Li, X. Dynamic analysis of the dual-loop organic rankine cycle
for waste heat recovery of a natural gas engine. Energy Convers. Manag. 2017, 148, 724–736. [CrossRef]
4. Nami, H.; Ertesvåg, I.S.; Agromayor, R.; Riboldi, L.; Nord, L.O. Gas turbine exhaust gas heat recovery
by organic rankine cycles (ORC) for offshore combined heat and power applications—Energy and exergy
analysis. Energy 2018, 165, 1060–1071. [CrossRef]
5. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to
Biology, Control, and Artificial Intelligence; University of Michigan Press: Ann Arbor, MI, USA, 1975; ISBN
9780472084609.
6. De Jong, K. An Analysis of the Behavior of a Class of Genetic Adaptive Systems; University of Michigan Press:
Ann Arbor, MI, USA, 1975.
7. Martin, H. Economic optimization of compact heat exchangers. In Proceedings of the EF-Conference on
Compact Heat Exchangers and Enhancement Technology for the Process Industries, Banff, AB, Canada,
18–23 July 1999; pp. 1–6.
8. Reneaume, J.-M.; Niclout, N. MINLP optimization of Plate Fin Heat Exchangers. Chem. Biochem. Eng. Q.
2003, 17, 65–76.
9. Selba¸s, R.; Kızılkan, Ö.; Reppich, M. A new design approach for shell-and-tube heat exchangers using genetic
algorithms from economic point of view. Chem. Eng. Process. Process Intensif. 2006, 45, 268–275. [CrossRef]
10. Muralikrishna, K.; Shenoy, U.V. Heat exchanger design targets for minimum area and cost. Chem. Eng. Res.
Des. 2000, 78, 161–167. [CrossRef]
11. Ozkol, I.; Komurgoz, G. Determination of the optimum geometry of the heat exchanger body via a genetic
algorithm. Numer. Heat Transf. Part A Appl. 2005, 48, 283–296. [CrossRef]
12. Jarzebski, A.B.; Wardas-Koziel, E. Dimensioning of plate heat exchangers to give minimum annual operating
costs. Chem. Eng. Res. Des. 1985, 63, 211–218.
13. Zhu, J.; Zhang, W. Optimization design of plate heat exchangers (PHE) for geothermal district heating
systems. Geothermics 2004, 33, 337–347. [CrossRef]
14. Ahmadi, P.; Dincer, I.; Rosen, M.A. Thermodynamic modeling and multi-objective evolutionary-based
optimization of a new multigeneration energy system. Energy Convers. Manag. 2013, 76, 282–300. [CrossRef]
15. Ahmadi, P.; Dincer, I.; Rosen, M.A. Thermoeconomic multi-objective optimization of a novel biomass-based
integrated energy system. Energy 2014, 68, 958–970. [CrossRef]
16. Wang, J.; Wang, M.; Li, M.; Xia, J.; Dai, Y. Multi-objective optimization design of condenser in an organic
Rankine cycle for low grade waste heat recovery using evolutionary algorithm. Int. Commun. Heat Mass
Transf. 2013, 45, 47–54. [CrossRef]
17. Aneke, M.; Agnew, B.; Underwood, C. Optimising thermal energy recovery, utilisation, and management in
the process industries. Appl. Therm. Eng. 2012, 36, 171–180. [CrossRef]
18. Valencia, G.; Fontalvo, A.; Cárdenas, Y.; Duarte, J.; Isaza, C. Energy and exergy analysis of different exhaust
waste heat recovery systems for natural gas engine based on ORC. Energies 2019, 12, 2378. [CrossRef]
19. Hou, G.; Bi, S.; Lin, M.; Zhang, J.; Xu, J. Minimum variance control of organic rankine cycle based waste heat
recovery. Energy Convers. Manag. 2014, 86, 576–586. [CrossRef]
20. Le, V.L.; Kheiri, A.; Feidt, M.; Pelloux-Prayer, S. Thermodynamic and economic optimizations of a waste
heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working
fluid. Energy 2014, 78, 622–638. [CrossRef]
21. Peris, B.; Navarro-Esbrí, J.; Molés, F. Bottoming organic rankine cycle configurations to increase internal
combustion engines power output from cooling water waste heat recovery. Appl. Therm. Eng. 2013, 61,
364–371. [CrossRef]
22. Xi, H.; Li, M.-J.; Xu, C.; He, Y.-L. Parametric optimization of regenerative organic rankine cycle (ORC) for
low grade waste heat recovery using genetic algorithm. Energy 2013, 58, 473–482. [CrossRef]
23. Quoilin, S.; Aumann, R.; Grill, A.; Schuster, A.; Lemort, V.; Spliethoff, H. Dynamic modeling and optimal
control strategy of waste heat recovery organic rankine cycles. Appl. Energy 2011, 88, 2183–2190. [CrossRef]
24. Wang, E.; Yu, Z.; Zhang, H.; Yang, F. A regenerative supercritical-subcritical dual-loop organic rankine cycle
system for energy recovery from the waste heat of internal combustion engines. Appl. Energy 2017, 190,
574–590. [CrossRef]
25. Wang, L.; Sundén, B. Optimal design of plate heat exchangers with and without pressure drop specifications.
Appl. Therm. Eng. 2003, 23, 295–311. [CrossRef]
26. Starace, G.; Fiorentino, M.; Longo, M.P.; Carluccio, E. A hybrid method for the cross flow compact heat
exchangers design. Appl. Therm. Eng. 2017, 111, 1129–1142. [CrossRef]
27. Starace, G.; Fiorentino, M.; Meleleo, B.; Risolo, C. The hybrid method applied to the plate-finned tube
evaporator geometry. Int. J. Refrig. 2018, 88, 67–77. [CrossRef]
28. Gullapalli, V.S. Modeling of brazed plate heat exchangers for ORC systems. Energy Procedia 2017, 129,
443–450. [CrossRef]
29. Durmu¸s, A.; Benli, H.; Kurtba¸s, ˙I.; Gül, H. Investigation of heat transfer and pressure drop in plate heat
exchangers having different surface profiles. Int. J. Heat Mass Transf. 2009, 52, 1451–1457. [CrossRef]
30. Kehlhofer, R.; Rukes, B.; Hannemann, F.; Stirnimann, F. Combined-Cycle Gas & Steam Turbine Power Plants;
PennWell: Tulsa, OK, USA, 2009; ISBN 9781593701680.
31. Gusew, S. Heat Transfer in Plate Heat Exchangers in the Transition Flow Regime. J. Enhanc. Heat Transf. 2015,
22, 441–455. [CrossRef]
32. Zhou, Y.; Zhu, L.; Yu, J.; Li, Y. Optimization of plate-fin heat exchangers by minimizing specific entropy
generation rate. Int. J. Heat Mass Transf. 2014, 78, 942–946. [CrossRef]
33. Geni´c, S.; Ja´cimovi´c, B.; Petrovic, A. A novel method for combined entropy generation and economic
optimization of counter-current and co-current heat exchangers. Appl. Therm. Eng. 2018, 136, 327–334.
[CrossRef]
34. Ayadi, A.; Zanni-Merk, C.; de Beuvron, F.B.; Krichen, S. A multi-objective method for optimizing the
transittability of complex biomolecular networks. Procedia Comput. Sci. 2018, 126, 507–516. [CrossRef]
35. Zare, V. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal
power plants. Energy Convers. Manag. 2015, 105, 127–138. [CrossRef]
36. Etghani, M.M.; Shojaeefard, M.H.; Khalkhali, A.; Akbari, M. A hybrid method of modified NSGA-II and
TOPSIS to optimize performance and emissions of a diesel engine using biodiesel. Appl. Therm. Eng. 2013,
59, 309–315. [CrossRef]
37. Chen, S.J.; Hwang, C.L. Fuzzy multiple attribute decision making methods. In Fuzzy Multiple Attribute
Decision Making; Springer: Heidelberg, Germany, 1992; Volume 375, pp. 289–486.
38. Valencia, G.; Benavides, A.; Cardenas, Y. Economic and environmental multi-objective optimization of
a wind-solar-fuel cell hybrid energy system in the colombian caribbean region. Energies 2019, 12, 2119.
[CrossRef]
39. Feng, Y.; Zhang, Y.; Li, B.; Yang, J.; Shi, Y. Sensitivity analysis and thermoeconomic comparison of ORCs
(organic Rankine cycles) for low temperature waste heat recovery. Energy 2015, 82, 664–677. [CrossRef]
40. De Oliveira Neto, R.; Adolfo Rodriguez Sotomonte, C.; Coronado, C.J.R.; Nascimento, M. Technical and
economic analyses of waste heat energy recovery from internal combustion engines by the Organic Rankine
Cycle. Energy Convers. Manag. 2016, 129, 168–179. [CrossRef]
41. Imran, M.; Pambudi, N.A.; Farooq, M. Thermal and hydraulic optimization of plate heat exchanger using
multi objective genetic algorithm. Case Stud. Therm. Eng. 2017, 10, 570–578. [CrossRef]
42. Imran, M.; Usman, M.; Park, B.-S.; Kim, H.-J.; Lee, D.-H. Multi-objective optimization of evaporator of
organic rankine cycle (ORC) for low temperature geothermal heat source. Appl. Therm. Eng. 2015, 80, 1–9.
[CrossRef] | |