dc.creator | Mendoza Merchán, Eduardo Vicente | |
dc.creator | Andramuño, Joselyne | |
dc.creator | Núñez Alvarez, José Ricardo | |
dc.creator | Córdova Rivadeneira, Luis | |
dc.date | 2022-01-11T21:26:15Z | |
dc.date | 2022-01-11T21:26:15Z | |
dc.date | 2021 | |
dc.date.accessioned | 2023-10-03T20:00:02Z | |
dc.date.available | 2023-10-03T20:00:02Z | |
dc.identifier | 1742-6588 | |
dc.identifier | 1742-6596 | |
dc.identifier | https://hdl.handle.net/11323/8970 | |
dc.identifier | doi:10.1088/1742-6596/2090/1/012124 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9173728 | |
dc.description | The rapid development of Information and Communication Technologies (ICT) and high-capacity hardware components make it necessary to achieve a strong integration of automatic systems based on new paradigms on intelligent distributed architectures, where require highly complex supervision and control tasks, due to the generated requirements of the new production systems, the high number of variables to control and the advancement of technologies, especially in industries where continuous processes have been established. In the present work, a distributed hierarchical modular architecture is proposed for a supervision system, based on multi-agent systems (MAS), oriented to the management of processes in the filtration stage of a water purification plant, using a methodology to the implementation of intelligent agents that allow to project, design, verify and validate the system. This methodology is fundamentally based on the use of the Unified Modeling Language (UML) for its projection and Petri nets (PN) for the simulation and validation of properties, which allows to guarantee the modularity, flexibility, and robustness of the proposed system. The architectures of the intelligent agents in the different programmable devices are modeled and simulated to achieve an adequate interaction and collaboration, allowing to reduce the conflicts that may be generated between them. The evaluation of the distributed architecture focuses on the fulfillment of the functional requirements and evaluation metrics, which, through the analysis of the properties of the Petri net, allows to determine the correct operation of the system and its dynamic behavior in the face of unforeseen situations at different levels of automation. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | [1] Metzger, M., & Polakow, G. 2011. 2011. A survey on applications of agent technology in
industrial process control. IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp. 570-581. | |
dc.relation | [2] Vilanova, R., Santín, I., & Pedret, C. 2017. Control en estaciones depuradoras de aguas residuales: Estado actual y perspectivas. Revista Iberoamericana de Automática e Informática Industrial
RIAI, vol. 14, no. 4, pp. 329-345. | |
dc.relation | [3] Nuñez Alvarez, J. R., Zamora, Y. P., Pina, I. B., & Angarita, E. N. 2021. Demilitarized network to secure the data stored in industrial networks. International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 1, pp. 611. | |
dc.relation | [4] Aguilar, J., Bolivar, A.R., Hidrobo, F., & Cerrada, M. 2012. Sistemas MultiAgentes y sus Aplicaciones en Automatización Industrial. 2nd Edition, Universidad de Los Andes. Venezuela. | |
dc.relation | [5] Valdez, J., Pandolfi, D., & Villagra, A. 2018. Red de sensores inteligentes para adquisición de datos de una planta de desalinización de agua. Informes Científicos Técnicos-UNPA, vol. 10, no.
2, pp. 83-95. | |
dc.relation | [6] Nuñez-Alvarez, J. R., Benítez-Pina, I., & Llosas-Albuerne, Y. 2020. Communications in Flexible
Supervisor for Laboratory Research in Renewable Energy. IOP Conf. Series: Materials Science
and Engineering, vol. 844, pp. 012016 doi:10.1088/1757-899X/844/1/012016 | |
dc.relation | [7] Michel, F., Ferber, J., & Drogoul, A. 2018. Multi-agent systems and simulation: A survey from
the agent community’s perspective. Multi-Agent Systems, CRC Press, pp. 17-66. | |
dc.relation | [8] Oliveira, P., Pinto, T., Morais, H., & Vale, Z. 2012. MASGriP—a multi-agent smart grid
simulation platform. IEEE Power and Energy Society General Meeting, 2012, pp. 1-8. | |
dc.relation | [9] Grignard A., Taillandier P., Gaudou B., Vo D.A., Huynh N.Q., & Drogoul A. 2013. GAMA 1.6:
Advancing the Art of Complex Agent-Based Modeling and Simulation. Lecture Notes in
Computer Science, vol 8291. Springer, Berlin. https://doi.org/10.1007/978-3-642-44927-7_9 | |
dc.relation | [10] Leitão, P., Rodrigues, N., Turrin, C., & Pagani, A. 2015. Multiagent system integrating process and quality control in a factory producing laundry washing machines. IEEE Transactions on
Industrial Informatics, vol. 11, no. 4, pp. 879-886. | |
dc.relation | [11] Dorri, A., Kanhere, S. S., & Jurdak, R. 2018. Multi-agent systems: A survey. IEEE Access, vol. 6,
pp. 28573-28593. | |
dc.relation | [12] Jiang, Z., Khalgui, M., Mosbahi, O., & Jaouadi, A. 2014. A novel hierarchical multi-agent architecture for automatic restoration of smart grids. International Journal of Control and Automation, vol. 7, no. 1, pp. 153-170. | |
dc.relation | [13] Bravo, C., Aguilar Castro, J., Ríos, A., Aguilar Martin, J., & Rivas, F. 2011. Arquitectura basada
en inteligencia artificial distribuida para la gerencia integrada de producción industrial. Revista
iberoamericana de automática e informática industrial, vol. 8, no. 4, pp. 405-417. | |
dc.relation | [14] Cárdenas Torres, J. S., & Casas León, J. D. 2017. Diseño de una red hidráulica, automatizada, para
la optimización del lavado de filtros de la planta de tratamiento de agua potable de Guasca,
Cundinamarca. Thesis, Fundación Universidad de América, Colombia. | |
dc.relation | [15] Arenas Castaño, F. A., & Londoño Giraldo, W. H. 2017. Diseño de un sistema automatizado para
una planta de tratamiento de agua potable. Thesis. Instituto Tecnológico Metropolitano. Colombia. | |
dc.relation | [16] Patriarca, H A., & Campana, A. 2013. Automatización de acueducto con tecnología GSM/GPRS:
Uso de Herramientas Grafcet y GEMMA Aplicación sobre tecnología PLC-HMI-SCADA.
Editorial Académica Española, pp. 160. | |
dc.relation | [17] Calderón Córdova, C., et al., Monitoring and automation of the water pumping, and storage
process applied to a water treatment plant. 13th Iberian Conference on Information Systems and
Technologies (CISTI), 2018, pp. 1-6. doi: 10.23919/CISTI.2018.8399292 | |
dc.relation | [18] González-Salcedo, L. O., & García-Nuñez, J. B. 2020. Elaboración de un modelo neuronal
artificial para la estimación de turbiedad y proposición de dosificaciones en el tratamiento de aguas
residuales de la industria avícola. Informador Técnico, vol. 84, no. 1, pp. 3-17. | |
dc.relation | [19] Mendoza, E., Andramuño, J., Núñez, J., & Benítez, I. 2021. Deliberative architecture for smart
sensors in the filtering operation of a water purification plant. J. Phys.: Conf. Ser., vol. 1730, no.
1, pp. 012088. doi: 10.1088/1742-6596/1730/1/012088. | |
dc.relation | [20] Bazyd\lo, G., Wojnakowski, M., & Wiśniewski, R. The use of UML and Petri net for graphic
specification of the reconfigurable logic controllers. AIP Conference Proceedings, 2018, vol.
2040, no. 1, pp. 080004. | |
dc.relation | [21] Vani, M., Kumari, M. C., Priya, M. H., & Harika, N. 2015. An effective language for objectoriented design-uml (unified modeling language). International Research Journal of Engineering
and Technology (IRJET 2015), vol. 2, no. 5, pp. 1212-1218. | |
dc.relation | [22] Hendricks, D. W. 2006. Water treatment unit processes: physical and chemical. 1
st Edition. CRC
press, pp. 1266. | |
dc.relation | [23] Faust, S. D., & Aly, O. M. 1996. Chemistry of water treatment. 1
st Edition. CRC press, pp. 600. | |
dc.relation | [24] Mendoza, E. V., Fuentes, P., Benítez, I., Reina, D., & Núñez, J. 2020. Red de sensores
inalámbricos multisalto para sistemas domóticos de bajo costo y área extendida. Revista
Iberoamericana de Automática e Informática industrial, vol. 17, no. 4, pp. 412-423. doi:
10.4995/riai.2020.12301. | |
dc.relation | [25] Andramuño, J., Mendoza, E., Núñez, J., & Liger, E. 2021. Intelligent distributed module for local
control of lighting and electrical outlets in a home. J. Phys.: Conf. Ser., vol. 1730, no. 1, pp.
012001. doi: 10.1088/1742-6596/1730/1/012001. | |
dc.relation | [26] Nuñez, J. R., et al., 2019. Tools for the Implementation of a SCADA System in a Desalination
Process. IEEE Latin America Transactions, vol. 17, no. 11, pp. 1858-1864, DOI:
10.1109/TLA.2019.8986424 | |
dc.relation | [27] Mendoza, E., Andramuño, J., & Córdova, L. 2020. Intelligent flow and level sensors for a filtering
system in a water treatment plant. Proceedings of the LACCEI international Multi-conference for
Engineering, Education and Technology, doi: 10.18687/LACCEI2020.1.1.424. | |
dc.relation | [28] Zarandi, M. F., & Azad, F. K. 2013. A type 2 fuzzy multi agent-based system for scheduling of
steel production. 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS),
pp. 992-996. | |
dc.relation | [29] Fazel Zarandi, M. H., Kashani Azad, F., & Karimi Kashani, H. A. 2017. A Hybrid Modeling for
Continuous Casting Scheduling Problem. AUT Journal of Modeling and Simulation, vol. 49, no.
2, pp. 173-180. | |
dc.relation | [30] Taboun, M. S., & Brennan, R. W. 2017. An embedded multi-agent system based industrial
wireless sensor network. Sensors, vol. 17, no. 9, pp. 2112. | |
dc.relation | [31] Turcu, C., Turcu, C., & Gaitan, V. 2018. An Internet of Things oriented approach for water utility
monitoring and control. Advances in Computer Science,
arXiv:1811.12807, pp. 175-180. | |
dc.relation | [32] Legien, G., et al. 2017. Agent-based decision support system for technology recommendation.
Procedia Computer Science, vol. 108, pp. 897-906. | |
dc.relation | [33] Zhao, Z., & Xu, Y. 2010. DPMAS: A Design Method for Multi-agent System Using Agent
UML. 2010 Third International Conference on Information and Computing, pp. 137-140, doi:
10.1109/ICIC.2010.305. | |
dc.relation | [34] Silva, J. R., Benítez, I., Villafruela, L., Gomis, O., & Sudrià, A. 2008. Modeling extended Petri
nets compatible with GHENeSys IEC61131 for industrial automation. The International Journal
of Advanced Manufacturing Technology, vol. 36, no. 11-12, pp. 1180-1190. | |
dc.relation | [35] Girault, C., & Valk, R. 2013. Petri nets for systems engineering: a guide to modeling, verification,
and applications. 3
rd Edition. Springer Science & Business Media. | |
dc.relation | [36] Stanimirović, P. S., & Petković, M. D. Gauss–Jordan elimination method for computing outer
inverses. Applied Mathematics and Computation, vol. 219, no. 9, pp. 4667-4679. | |
dc.relation | [37] García, D. R., Simari, G. R., & García. A. J. 2004. Planificación de agentes BDI. VI Workshop de
Investigadores en Ciencias de la Computación, 2004, pp. 418-423.
http://sedici.unlp.edu.ar/handle/10915/21240 | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Journal of Physics: Conference Series | |
dc.subject | Multi-agent systems | |
dc.subject | Automation systems | |
dc.subject | Water treatment plant | |
dc.subject | UML | |
dc.subject | Petri net | |
dc.title | Intelligent multi-agent architecture for a supervisor of a water treatment plant | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |