dc.contributor | Ortiz Barrios, Miguel Ángel | |
dc.contributor | Salas Navarro, Katherinne Paola | |
dc.creator | Núñez Pérez, Nixon De Jesús | |
dc.date | 2018-11-03T18:02:06Z | |
dc.date | 2018-11-03T18:02:06Z | |
dc.date | 2017-09-06 | |
dc.date.accessioned | 2023-10-03T19:59:58Z | |
dc.date.available | 2023-10-03T19:59:58Z | |
dc.identifier | http://hdl.handle.net/11323/338 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9173719 | |
dc.description | El tiempo de espera es una medida de rendimiento crucial en los departamentos de A & E. En este sentido, los tiempos de espera más largos están relacionados con la baja satisfacción del paciente, altas tasas de mortalidad y complicaciones de salud física más graves. Este trabajo tiene
como objetivo diseñar y pre-test de escenarios de mejora a la atención de la atención ED a través
de la utilización de la simulación de eventos discretos (DES). En primer lugar, se realiza el análisis de datos de entrada. Posteriormente, se desarrolla y valida el modelo DES para
establecer si es estadísticamente comparable con el mundo real. A continuación, se calculan y analizan los indicadores de rendimiento del sistema actual. Finalmente, las estrategias de mejora
son propuestas y evaluadas mediante modelos de simulación y pruebas estadísticas. Se presenta
un estudio de caso de un departamento de A & E de una clínica general del distrito para validar el marco propuesto. En particular, validaremos la eficacia de la introducción de un sistema de triaje (Escenario 3), una estrategia que no es actualmente adoptada por la clínica. Los resultados demostraron que los tiempos de espera podrían disminuir significativamente sobre la base de los enfoques propuestos en este documento | |
dc.description | Waiting time is a crucial performance metric in A&E departments. In this regard, longer waiting times are related to low patient satisfaction, high mortality rates and more severe physical health complications. This paper aims to design and pretest improvement scenarios to ED care delivery via using Discrete Event Simulation (DES). First, input data analysis is carried out. Afterward, the DES model is developed and validated to establish whether it is statistically comparable with the real-world. Then, performance indicators of the current system are computed and analyzed. Finally, improvement strategies are proposed and evaluated by simulation modelling and statistical tests. A case study of an A&E department from a district general clinic is presented to validate the proposed framework. In particular, we will validate the effectiveness of introducing a triage system (Scenario 3), a strategy that is not currently adopted by the clinic. Results demonstrated that waiting times could be meaningfully diminished based on the proposed approaches within this paper. | |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Maestría en Ingeniería | |
dc.relation | Abo-Hamad, W. & Arisha, A. (2013). Simulation-based framework to improve patient
experience in an emergency department. European Journal of Operational Research, 224,
154– 166. | |
dc.relation | Acosta A. Rolando J. Técnicas Modernas de optimización Universidad Industrial de Santander,
2010 | |
dc.relation | Aeenparast, A., Tabibi, S., Shahanaghi, K., & Aryanejhad, M. (2013). Reducing Outpatient
Waiting Time: A Simulation Modeling Approach. Iranian Red Crescent Medical Journal,
15(9), 865-869. | |
dc.relation | Araidah, A., Boran, O., & Wahsheh, A. (2012). Reducing delay in healthcare delivery at
outpatient’s clinics using discrete event simulation. International Journal Simulation
Model, 4, 185-195. | |
dc.relation | Bahadori, M., Mohammadnejhad, S., Ravangard, R., &Teymourzadeh, E. (2014). Using Queuing
Theory and Simulation Model to Optimize Hospital Pharmacy Performance. Iran Red
Crescent Med Journal, 16 (3), 1-7. | |
dc.relation | Banks, J., Cochran-Smith, M., Moll, L., Richert, A., Zeichner, K., LePage, P., & McDonald, M.
(2005). Teaching diverse learners. Preparing teachers for a changing world: What
teachers should learn and be able to do, 2005, 232-274. | |
dc.relation | Barrios, M. A. O., Caballero, J. E., & Sánchez, F. S. (2015, December). A methodology for the
creation of integrated service networks in outpatient internal medicine. In Ambient Intelligence for Health (pp. 247-257). Springer International Publishing. | |
dc.relation | Batanero, C. (2001). Aleatoriedad, modelización, simulación. Actas de las X Jornadas sobre el
Aprendizaje y la Enseñanza de las Matemáticas, 119-130. | |
dc.relation | Brailsford, S., Harper, P., Patel, B. and Pitt, M. (2009). "An analysis of the academy c
literature on simulation and modelling in health care." Journal of Simulation, Vol. 3 No.
3, pp.130-140. | |
dc.relation | Chou, Y. L., & Armer, V. A. (1990). Análisis estadístico (No. QA278. 2. CH68 1976.). McGraw-Hill. | |
dc.relation | Coelli, F., Ferreira, R., Almeida, R., & Pereira, W (2007). Computer simulation and discreteevent models in the analysis of a mammography clinic patient flow. Computer Methods
and Programs in Biomedicine, 87, 201 - 207. | |
dc.relation | Comas, A. S., Palacio, A. T., Mendoza, S. T., & Rodado, D. N. (2016). Aplicación del diseño de
experimentos taguchi para la identificación de factores de influencias en tiempos de
impresión 3D con modelado por deposición fundida. International Journal of
Management Sciences and Operations Research, 1(1), 43-48. | |
dc.relation | Constitution Política de Colombia [Const.] (1991). Articulo 49 [titulo 3] 2da ed. Legis. | |
dc.relation | Coss-Bu, J. A., Jefferson, L. S., Walding, D., David, Y., Smith, E. O., & Klish, W. J. (1998). | |
dc.relation | Resting energy expenditure in children in a pediatric intensive care unit: comparison of
Harris-Benedict and Talbot predictions with indirect calorimetry values. The American
journal of clinical nutrition, 67(1), 74-80. | |
dc.relation | Dunna, E. G., Reyes, H. G., & Barrón, L. E. C. (2006). Simulación y análisis de sistemas con
ProModel. Pearson Educación. | |
dc.relation | De Angelis, V., Felici, G., &Impelluso, P. (2003). Integrating simulation and optimization in
health care centre management. European Journal of Operational Research, 150, 101–
114. | |
dc.relation | Eatock, J., Clarke, M., Picton, C., & Young, T. (2011). Meeting the four-hour deadline in an
A&E department. Journal of health organization and management, 25(6), 606-624 | |
dc.relation | Elkhuizen, S., Das, S., Bakker, P. & Hontelez, J. (2007). Using computer simulation to re-duce
access time for outpatient departments. Quality and Safety in HealthCare, 16, 382– 386. | |
dc.relation | Fletcher, A. and Worthington, D. (2009). "What is a ‘generic’ hospital model?—a comparison of
‘generic’ and ‘specific’ hospital models of emergency patient flows." Health Care
Management Science, Vol. 12 No. 4, pp. 374–391. | |
dc.relation | Feito, B. A., Rath, A. M., Longchampt, E., & Azorin, J. (2000). Experimental study on the in
vivo behaviour of new collagen glue in lung surgery. European Journal of cardiothoracic surgery, 17(1), 8-13. | |
dc.relation | Furian, N., O’sullivan, M., Walker, C., Vössner, S., & Neubacher, D. (2015). A conceptual
modeling framework for discrete event simulation using hierarchical control
structures. Simulation Modelling Practice and Theory, 56, 82-96. | |
dc.relation | Gáfaro-Rojas, A. I., Mallor-Giménez, F., & Azcárate-Camio, C. (2014). Modelado de la atención
en consulta externa en un hospital público: una herramienta de gestión. Revista Gerencia
y Políticas de Salud, 13(26), 106-118. | |
dc.relation | Gausch, Antoni et al. Modelado y simulacion aplicados a procesos logísticos de fabricación
servicios. México D: F; Alfa omega, 2005 p28. | |
dc.relation | Gillespie, J., McClean, S., Garg, L., Barton, M., Scotney, B., & Fullerton, K. (2016). A multiphase DES modelling framework for patient-centred care. Journal of the Operational
Research Society, 67(10), 1239-1249. | |
dc.relation | Gómez, A., Quintana, N., & Ávila, J. (2015). Discrete Event Simulation and Line of Balance
Diagram, Applied to the Improvement of the Foundation Construction Process. Ingenieria
y Ciencia, 11 (21), 157-175. | |
dc.relation | Granja, C., Almada- Lobo, B., Janela, F., Seabra, J. & Mendes, A. (2014). An optimization based
on simulation approach to the patient admission scheduling problem using a linear
programing algorithm. Journal of Biomedical Informatics, 52, 427–437. | |
dc.relation | Gul, M., & Guneri, A. (2015). Simulation modelling of a patient surge in an emergency
department under disaster conditions. Croatian Operational Research Review, 6, 429–
443. | |
dc.relation | Gul, M., & Guneri, A. F. (2015). A comprehensive review of emergency department simulation
applications for normal and disaster conditions. Computers& Industrial Engineering, 83,
327-344. | |
dc.relation | Kelton, W. D. (2000). Experimental design for simulation. In Simulation Conference, 2000.
Proceedings. Winter (Vol. 1, pp. 32-38). IEEE. | |
dc.relation | Lieberman, G. J., & Hiller, F. S. (2010). Introdução a pesquisa operacional. Tradução: Ariovaldo
Griese (8a ed.). Porto Alegre: AMGH. | |
dc.relation | Lane, D.C., Monefeldt, C. and Rosenhead, J.V. (2000). "Looking in the wrong place for
healthcare improvements: A system dynamics study of an accident and emergency
depart-ment." Journal of the Operational Research Society, Vol. 51 No. 5, pp. 518-531. | |
dc.relation | Mandahawi, N., Al-Shihabi, S., Abdallah, A., & Alfarah, Y. (2010). Reducing waiting time at an
emergency department using design for Six Sigma and discrete event simulation. InternationalJournalSix Sigma and Competitive Advantage, 6, (1), 91-104. | |
dc.relation | Marshall, D., Burgos-Liz, L., Ijzerman, M., Osgood, N., Padula, W., Higashi, M., Wong, P.,
Pasupathy, K., Crown, W. Applying Dynamic Simulation Modeling Methods in Health
Care Delivery Research—The SIMULATE Checklist: Report of the ISPOR Simulation
Modeling Emerging Good Practices Task Force (2015). Value in Health, 18, 5-16. | |
dc.relation | McKay, M. D., Beckman, R. J., & Conover, W. J. (2000). A comparison of three methods for
selecting values of input variables in the analysis of output from a computer
code. Technometrics, 42(1), 55-61. | |
dc.relation | Ministerio de Salud y Protección Social. (2015). Indicadores IPS’s Oportunidad de atención a la
consulta de urgencias Departamental. Recuperado de:
http://calidadensalud.minsalud.gov.co/Observatorio/ListadodeIndicadores/ListadeIndicad
ores/Resultados/IndicadoresdeIPSparaDTS.aspx | |
dc.relation | Mocarzel, B., Shelton, D., Uyan, B., Pérez, E., Jimenez, J. & DePagter, L. (2013). Modeling and
simulation of patient admission services in a multi-specialty outpatient clinic.
Proceedings of the 2013 Winter Simulation Conference, 2309-2319. | |
dc.relation | Mohiuddin, Syed, John Busby, Jelena Savović, Alison Richards, Kate Northstone, William
Hollingworth, Jenny L. Donovan, and Christos Vasilakis. "Patient flow within UK
emergency departments: a systematic review of the use of computer simulation modelling
meth-ods." BMJ open 7, no. 5 (2017): e015007. | |
dc.relation | Nasiri, S. (2009). Lean Thinking and Queue Modelling in Healthcare. Lancaster University
Management School. | |
dc.relation | Neil N (2012). Transparently, with Validation. MedDecisMaking 2012 32:660-662.
N. Nuñez (2017) | |
dc.relation | Ortiz, M. & Lopez, P. (2016). Using Computer Simulation to Improve Patient Flow at an
Outpatient Internal Medicine Department. UCAmI 2016, Part I, LNCS 10069, pp. 1–6. | |
dc.relation | Ortiz, M. McClean, S. Nugent, C. & Castillo, A. (2016). Reducing Appointment Lead-Time in
an Outpatient Department of Gynecology and Obstetrics through Discrete-Event
Simulation: A Case Study. UCAmI 2016, Part I, LNCS 10069, pp. 274–285, 2016. | |
dc.relation | Parenti, N., Reggiani, M. L. B., Iannone, P., Percudani, D., & Dowding, D. (2014). A systematic
review on the validity and reliability of an emergency department triage scale, the
Manchester Triage System. International journal of nursing studies, 51(7), 1062-1069. | |
dc.relation | Pantojas Rojas, L. M., & Garavito Herrera, L. A. (2008). Analysing the Diana Turbay CAMI
emergency and hospitalisation processes using an Arena 10.0 simulation model for
optimal human resource distribution. Ingeniería e Investigación, 28(1), 146-153. | |
dc.relation | Pitt, M., Monks, T., Crowe, S., & Vasilakis, C. (2015). Systems modelling and simulation in
health service design, delivery and decision making. BMJ Quality & Safety, 1-8. | |
dc.relation | Rado O., Lupia B., Leung J.M.Y., Kuo Y.H., Graham C.A. (2014). Using Simulation to Analyze
Patient Flows in a Hospital Emergency Department. Springer Proceedings in
Mathematics & Statistics, 61,289– 301. | |
dc.relation | Robinson, S., Radnorb, Z., Burgessc, N., & Worthington, C. (2012). SimLean: Utilising
simulation in the implementation of lean in healthcare. European Journal of Operational
Research, 219, 188–197. | |
dc.relation | Rodriguez, J. F. G., Fariñas, A. G., Gonzalez, A. M. G., & León, G. A. R. (2012).
HERRAMENTALES DE LA INVESTIGACIÓN OPERACIONAL EN APOYO A LA
TOMA DE DECISIONES EN SALUD. Investigación Operacional, 33(3), 245-252. | |
dc.relation | Rodríguez, J., Serrano, D., Monleón, T., & Caroc, J. (2008). Discrete-event simulation mod-els
in the economic evaluation of health technologies and health products. Gaceta Sanitaria,
22 (2), 151-161. | |
dc.relation | Secretaria distrital de salud pública alcaldía de Barranquilla.
https://www.minsalud.gov.co/plandecenal/mapa/analisis-de-Situacion-SaludBarranquilla-2012-2015.pdf
Suarez B. Manuel F. Article de tinnila m. (1995), strategie perspective to business process de
designs. 33(3); p28. | |
dc.relation | Swisher, J., Jacobson, S., Jun, B., & Balci, O. (2001). Modeling and analyzing a physician clinic
environment using discrete-event (visual) simulation. Computers & Operations Research,
28, 105-125. | |
dc.relation | Tejedor, F. J. (1999). Análisis de varianza. La Muralla. | |
dc.relation | The Discrete Event Simulation as a Fundamental technique in making high impact decisions.
Available: http://www.vaticgroup.com/perspectiva-logistica/ediciones-anteriores/simulacion-de-eventos-discretos/. | |
dc.relation | TRUJILLO DIAZ, J. O. H. A. N. N. A., VALLEJO CUBILLOS, J. D., & BECERRA
FERNÁNDEZ, M. A. U. R. I. C. I. O. (2010). Metodología para la simulación de centros
de llamadas-Caso de estudio. Studiositas, 5(3). | |
dc.relation | Van Sambeek, J., Joustra, P., Das, S., Bakker, P., & Maas, M. (2015). Reducing MRI access
times by tackling the appointment-scheduling strategy. BMJ Quality & Safety, 20 (12),
1075-1080. | |
dc.relation | Velásquez-Restrepo, P. A., Rodríguez-Quintero, A. K., & Jaén-Posada, J. S. (2011).
Metodologías cuantitativas para la optimización del servicio de urgencias: una revisión
de la literatura. Revista Gerencia y Políticas de Salud, 10(21). | |
dc.relation | Viana, J., Brailsford, S.C., Harindra, V. & Harper, P.R. (2014). Combining discrete-event
simulation and system dynamics in a healthcare setting: A composite model for
Chlamydia infection. European Journal of Operational Research, 237, 196-206. | |
dc.relation | Villamizar, J., Coelli, F., Pereira, W., Almeida, R. (2011). Discrete-event computer simulation
methods in the optimization of a physiotherapy clinic. Physiotherapy, 97, 71–77. | |
dc.relation | Wang, Z., Eatock, J., McClean, S., Liu, D., Liu, X., & Young, T. (2013). Modeling through-put
of emergency departments via time series: an expectation maximization algorithm. ACM
Transaction Son Management Information Systems (TMIS), 4(4), 16. | |
dc.relation | Werker, G., Sauré, A., French, J., & Shechter, S. (2009). The use of discrete event simulation
modelling to improve radiation therapy planning processes. Radiotherapy and Oncology,
92, 76–82. | |
dc.relation | Ximénez, M. C., & San Martín, R. (2000). Análisis de varianza con medidas repetidas. Editorial
La Muralla. | |
dc.relation | Zapata, C. J. (2010). Análisis probabilístico y simulación. Grupo de investigación en
planeamiento de sistemas eléctricos. Universidad Tecnológica de Pereira. Pereira–
Colombia. | |
dc.relation | Zeng, Z., Ma, X., Hu, Y., Li, J., & Bryant, D. (2012). A simulation study to improve quality of
care in the emergency department of a community hospital. Journal of Emergency
Nursing, 38, 322-328. | |
dc.rights | Atribución – No comercial – Compartir igual | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | Simulación de eventos discretos | |
dc.subject | Accidentes y emergencias | |
dc.subject | Departamento de urgencias | |
dc.title | Diseño de un modelo de simulación para la mejora de la oportunidad de atención en urgencias de una Clínica de Barranquilla | |
dc.type | Trabajo de grado - Pregrado | |
dc.type | http://purl.org/coar/resource_type/c_7a1f | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/bachelorThesis | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/TP | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |