dc.contributorOrtiz Barrios, Miguel Ángel
dc.contributorSalas Navarro, Katherinne Paola
dc.creatorNúñez Pérez, Nixon De Jesús
dc.date2018-11-03T18:02:06Z
dc.date2018-11-03T18:02:06Z
dc.date2017-09-06
dc.date.accessioned2023-10-03T19:59:58Z
dc.date.available2023-10-03T19:59:58Z
dc.identifierhttp://hdl.handle.net/11323/338
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173719
dc.descriptionEl tiempo de espera es una medida de rendimiento crucial en los departamentos de A & E. En este sentido, los tiempos de espera más largos están relacionados con la baja satisfacción del paciente, altas tasas de mortalidad y complicaciones de salud física más graves. Este trabajo tiene como objetivo diseñar y pre-test de escenarios de mejora a la atención de la atención ED a través de la utilización de la simulación de eventos discretos (DES). En primer lugar, se realiza el análisis de datos de entrada. Posteriormente, se desarrolla y valida el modelo DES para establecer si es estadísticamente comparable con el mundo real. A continuación, se calculan y analizan los indicadores de rendimiento del sistema actual. Finalmente, las estrategias de mejora son propuestas y evaluadas mediante modelos de simulación y pruebas estadísticas. Se presenta un estudio de caso de un departamento de A & E de una clínica general del distrito para validar el marco propuesto. En particular, validaremos la eficacia de la introducción de un sistema de triaje (Escenario 3), una estrategia que no es actualmente adoptada por la clínica. Los resultados demostraron que los tiempos de espera podrían disminuir significativamente sobre la base de los enfoques propuestos en este documento
dc.descriptionWaiting time is a crucial performance metric in A&E departments. In this regard, longer waiting times are related to low patient satisfaction, high mortality rates and more severe physical health complications. This paper aims to design and pretest improvement scenarios to ED care delivery via using Discrete Event Simulation (DES). First, input data analysis is carried out. Afterward, the DES model is developed and validated to establish whether it is statistically comparable with the real-world. Then, performance indicators of the current system are computed and analyzed. Finally, improvement strategies are proposed and evaluated by simulation modelling and statistical tests. A case study of an A&E department from a district general clinic is presented to validate the proposed framework. In particular, we will validate the effectiveness of introducing a triage system (Scenario 3), a strategy that is not currently adopted by the clinic. Results demonstrated that waiting times could be meaningfully diminished based on the proposed approaches within this paper.
dc.formatapplication/pdf
dc.languagespa
dc.publisherMaestría en Ingeniería
dc.relationAbo-Hamad, W. & Arisha, A. (2013). Simulation-based framework to improve patient experience in an emergency department. European Journal of Operational Research, 224, 154– 166.
dc.relationAcosta A. Rolando J. Técnicas Modernas de optimización Universidad Industrial de Santander, 2010
dc.relationAeenparast, A., Tabibi, S., Shahanaghi, K., & Aryanejhad, M. (2013). Reducing Outpatient Waiting Time: A Simulation Modeling Approach. Iranian Red Crescent Medical Journal, 15(9), 865-869.
dc.relationAraidah, A., Boran, O., & Wahsheh, A. (2012). Reducing delay in healthcare delivery at outpatient’s clinics using discrete event simulation. International Journal Simulation Model, 4, 185-195.
dc.relationBahadori, M., Mohammadnejhad, S., Ravangard, R., &Teymourzadeh, E. (2014). Using Queuing Theory and Simulation Model to Optimize Hospital Pharmacy Performance. Iran Red Crescent Med Journal, 16 (3), 1-7.
dc.relationBanks, J., Cochran-Smith, M., Moll, L., Richert, A., Zeichner, K., LePage, P., & McDonald, M. (2005). Teaching diverse learners. Preparing teachers for a changing world: What teachers should learn and be able to do, 2005, 232-274.
dc.relationBarrios, M. A. O., Caballero, J. E., & Sánchez, F. S. (2015, December). A methodology for the creation of integrated service networks in outpatient internal medicine. In Ambient Intelligence for Health (pp. 247-257). Springer International Publishing.
dc.relationBatanero, C. (2001). Aleatoriedad, modelización, simulación. Actas de las X Jornadas sobre el Aprendizaje y la Enseñanza de las Matemáticas, 119-130.
dc.relationBrailsford, S., Harper, P., Patel, B. and Pitt, M. (2009). "An analysis of the academy c literature on simulation and modelling in health care." Journal of Simulation, Vol. 3 No. 3, pp.130-140.
dc.relationChou, Y. L., & Armer, V. A. (1990). Análisis estadístico (No. QA278. 2. CH68 1976.). McGraw-Hill.
dc.relationCoelli, F., Ferreira, R., Almeida, R., & Pereira, W (2007). Computer simulation and discreteevent models in the analysis of a mammography clinic patient flow. Computer Methods and Programs in Biomedicine, 87, 201 - 207.
dc.relationComas, A. S., Palacio, A. T., Mendoza, S. T., & Rodado, D. N. (2016). Aplicación del diseño de experimentos taguchi para la identificación de factores de influencias en tiempos de impresión 3D con modelado por deposición fundida. International Journal of Management Sciences and Operations Research, 1(1), 43-48.
dc.relationConstitution Política de Colombia [Const.] (1991). Articulo 49 [titulo 3] 2da ed. Legis.
dc.relationCoss-Bu, J. A., Jefferson, L. S., Walding, D., David, Y., Smith, E. O., & Klish, W. J. (1998).
dc.relationResting energy expenditure in children in a pediatric intensive care unit: comparison of Harris-Benedict and Talbot predictions with indirect calorimetry values. The American journal of clinical nutrition, 67(1), 74-80.
dc.relationDunna, E. G., Reyes, H. G., & Barrón, L. E. C. (2006). Simulación y análisis de sistemas con ProModel. Pearson Educación.
dc.relationDe Angelis, V., Felici, G., &Impelluso, P. (2003). Integrating simulation and optimization in health care centre management. European Journal of Operational Research, 150, 101– 114.
dc.relationEatock, J., Clarke, M., Picton, C., & Young, T. (2011). Meeting the four-hour deadline in an A&E department. Journal of health organization and management, 25(6), 606-624
dc.relationElkhuizen, S., Das, S., Bakker, P. & Hontelez, J. (2007). Using computer simulation to re-duce access time for outpatient departments. Quality and Safety in HealthCare, 16, 382– 386.
dc.relationFletcher, A. and Worthington, D. (2009). "What is a ‘generic’ hospital model?—a comparison of ‘generic’ and ‘specific’ hospital models of emergency patient flows." Health Care Management Science, Vol. 12 No. 4, pp. 374–391.
dc.relationFeito, B. A., Rath, A. M., Longchampt, E., & Azorin, J. (2000). Experimental study on the in vivo behaviour of new collagen glue in lung surgery. European Journal of cardiothoracic surgery, 17(1), 8-13.
dc.relationFurian, N., O’sullivan, M., Walker, C., Vössner, S., & Neubacher, D. (2015). A conceptual modeling framework for discrete event simulation using hierarchical control structures. Simulation Modelling Practice and Theory, 56, 82-96.
dc.relationGáfaro-Rojas, A. I., Mallor-Giménez, F., & Azcárate-Camio, C. (2014). Modelado de la atención en consulta externa en un hospital público: una herramienta de gestión. Revista Gerencia y Políticas de Salud, 13(26), 106-118.
dc.relationGausch, Antoni et al. Modelado y simulacion aplicados a procesos logísticos de fabricación servicios. México D: F; Alfa omega, 2005 p28.
dc.relationGillespie, J., McClean, S., Garg, L., Barton, M., Scotney, B., & Fullerton, K. (2016). A multiphase DES modelling framework for patient-centred care. Journal of the Operational Research Society, 67(10), 1239-1249.
dc.relationGómez, A., Quintana, N., & Ávila, J. (2015). Discrete Event Simulation and Line of Balance Diagram, Applied to the Improvement of the Foundation Construction Process. Ingenieria y Ciencia, 11 (21), 157-175.
dc.relationGranja, C., Almada- Lobo, B., Janela, F., Seabra, J. & Mendes, A. (2014). An optimization based on simulation approach to the patient admission scheduling problem using a linear programing algorithm. Journal of Biomedical Informatics, 52, 427–437.
dc.relationGul, M., & Guneri, A. (2015). Simulation modelling of a patient surge in an emergency department under disaster conditions. Croatian Operational Research Review, 6, 429– 443.
dc.relationGul, M., & Guneri, A. F. (2015). A comprehensive review of emergency department simulation applications for normal and disaster conditions. Computers& Industrial Engineering, 83, 327-344.
dc.relationKelton, W. D. (2000). Experimental design for simulation. In Simulation Conference, 2000. Proceedings. Winter (Vol. 1, pp. 32-38). IEEE.
dc.relationLieberman, G. J., & Hiller, F. S. (2010). Introdução a pesquisa operacional. Tradução: Ariovaldo Griese (8a ed.). Porto Alegre: AMGH.
dc.relationLane, D.C., Monefeldt, C. and Rosenhead, J.V. (2000). "Looking in the wrong place for healthcare improvements: A system dynamics study of an accident and emergency depart-ment." Journal of the Operational Research Society, Vol. 51 No. 5, pp. 518-531.
dc.relationMandahawi, N., Al-Shihabi, S., Abdallah, A., & Alfarah, Y. (2010). Reducing waiting time at an emergency department using design for Six Sigma and discrete event simulation. InternationalJournalSix Sigma and Competitive Advantage, 6, (1), 91-104.
dc.relationMarshall, D., Burgos-Liz, L., Ijzerman, M., Osgood, N., Padula, W., Higashi, M., Wong, P., Pasupathy, K., Crown, W. Applying Dynamic Simulation Modeling Methods in Health Care Delivery Research—The SIMULATE Checklist: Report of the ISPOR Simulation Modeling Emerging Good Practices Task Force (2015). Value in Health, 18, 5-16.
dc.relationMcKay, M. D., Beckman, R. J., & Conover, W. J. (2000). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 42(1), 55-61.
dc.relationMinisterio de Salud y Protección Social. (2015). Indicadores IPS’s Oportunidad de atención a la consulta de urgencias Departamental. Recuperado de: http://calidadensalud.minsalud.gov.co/Observatorio/ListadodeIndicadores/ListadeIndicad ores/Resultados/IndicadoresdeIPSparaDTS.aspx
dc.relationMocarzel, B., Shelton, D., Uyan, B., Pérez, E., Jimenez, J. & DePagter, L. (2013). Modeling and simulation of patient admission services in a multi-specialty outpatient clinic. Proceedings of the 2013 Winter Simulation Conference, 2309-2319.
dc.relationMohiuddin, Syed, John Busby, Jelena Savović, Alison Richards, Kate Northstone, William Hollingworth, Jenny L. Donovan, and Christos Vasilakis. "Patient flow within UK emergency departments: a systematic review of the use of computer simulation modelling meth-ods." BMJ open 7, no. 5 (2017): e015007.
dc.relationNasiri, S. (2009). Lean Thinking and Queue Modelling in Healthcare. Lancaster University Management School.
dc.relationNeil N (2012). Transparently, with Validation. MedDecisMaking 2012 32:660-662. N. Nuñez (2017)
dc.relationOrtiz, M. & Lopez, P. (2016). Using Computer Simulation to Improve Patient Flow at an Outpatient Internal Medicine Department. UCAmI 2016, Part I, LNCS 10069, pp. 1–6.
dc.relationOrtiz, M. McClean, S. Nugent, C. & Castillo, A. (2016). Reducing Appointment Lead-Time in an Outpatient Department of Gynecology and Obstetrics through Discrete-Event Simulation: A Case Study. UCAmI 2016, Part I, LNCS 10069, pp. 274–285, 2016.
dc.relationParenti, N., Reggiani, M. L. B., Iannone, P., Percudani, D., & Dowding, D. (2014). A systematic review on the validity and reliability of an emergency department triage scale, the Manchester Triage System. International journal of nursing studies, 51(7), 1062-1069.
dc.relationPantojas Rojas, L. M., & Garavito Herrera, L. A. (2008). Analysing the Diana Turbay CAMI emergency and hospitalisation processes using an Arena 10.0 simulation model for optimal human resource distribution. Ingeniería e Investigación, 28(1), 146-153.
dc.relationPitt, M., Monks, T., Crowe, S., & Vasilakis, C. (2015). Systems modelling and simulation in health service design, delivery and decision making. BMJ Quality & Safety, 1-8.
dc.relationRado O., Lupia B., Leung J.M.Y., Kuo Y.H., Graham C.A. (2014). Using Simulation to Analyze Patient Flows in a Hospital Emergency Department. Springer Proceedings in Mathematics & Statistics, 61,289– 301.
dc.relationRobinson, S., Radnorb, Z., Burgessc, N., & Worthington, C. (2012). SimLean: Utilising simulation in the implementation of lean in healthcare. European Journal of Operational Research, 219, 188–197.
dc.relationRodriguez, J. F. G., Fariñas, A. G., Gonzalez, A. M. G., & León, G. A. R. (2012). HERRAMENTALES DE LA INVESTIGACIÓN OPERACIONAL EN APOYO A LA TOMA DE DECISIONES EN SALUD. Investigación Operacional, 33(3), 245-252.
dc.relationRodríguez, J., Serrano, D., Monleón, T., & Caroc, J. (2008). Discrete-event simulation mod-els in the economic evaluation of health technologies and health products. Gaceta Sanitaria, 22 (2), 151-161.
dc.relationSecretaria distrital de salud pública alcaldía de Barranquilla. https://www.minsalud.gov.co/plandecenal/mapa/analisis-de-Situacion-SaludBarranquilla-2012-2015.pdf Suarez B. Manuel F. Article de tinnila m. (1995), strategie perspective to business process de designs. 33(3); p28.
dc.relationSwisher, J., Jacobson, S., Jun, B., & Balci, O. (2001). Modeling and analyzing a physician clinic environment using discrete-event (visual) simulation. Computers & Operations Research, 28, 105-125.
dc.relationTejedor, F. J. (1999). Análisis de varianza. La Muralla.
dc.relationThe Discrete Event Simulation as a Fundamental technique in making high impact decisions. Available: http://www.vaticgroup.com/perspectiva-logistica/ediciones-anteriores/simulacion-de-eventos-discretos/.
dc.relationTRUJILLO DIAZ, J. O. H. A. N. N. A., VALLEJO CUBILLOS, J. D., & BECERRA FERNÁNDEZ, M. A. U. R. I. C. I. O. (2010). Metodología para la simulación de centros de llamadas-Caso de estudio. Studiositas, 5(3).
dc.relationVan Sambeek, J., Joustra, P., Das, S., Bakker, P., & Maas, M. (2015). Reducing MRI access times by tackling the appointment-scheduling strategy. BMJ Quality & Safety, 20 (12), 1075-1080.
dc.relationVelásquez-Restrepo, P. A., Rodríguez-Quintero, A. K., & Jaén-Posada, J. S. (2011). Metodologías cuantitativas para la optimización del servicio de urgencias: una revisión de la literatura. Revista Gerencia y Políticas de Salud, 10(21).
dc.relationViana, J., Brailsford, S.C., Harindra, V. & Harper, P.R. (2014). Combining discrete-event simulation and system dynamics in a healthcare setting: A composite model for Chlamydia infection. European Journal of Operational Research, 237, 196-206.
dc.relationVillamizar, J., Coelli, F., Pereira, W., Almeida, R. (2011). Discrete-event computer simulation methods in the optimization of a physiotherapy clinic. Physiotherapy, 97, 71–77.
dc.relationWang, Z., Eatock, J., McClean, S., Liu, D., Liu, X., & Young, T. (2013). Modeling through-put of emergency departments via time series: an expectation maximization algorithm. ACM Transaction Son Management Information Systems (TMIS), 4(4), 16.
dc.relationWerker, G., Sauré, A., French, J., & Shechter, S. (2009). The use of discrete event simulation modelling to improve radiation therapy planning processes. Radiotherapy and Oncology, 92, 76–82.
dc.relationXiménez, M. C., & San Martín, R. (2000). Análisis de varianza con medidas repetidas. Editorial La Muralla.
dc.relationZapata, C. J. (2010). Análisis probabilístico y simulación. Grupo de investigación en planeamiento de sistemas eléctricos. Universidad Tecnológica de Pereira. Pereira– Colombia.
dc.relationZeng, Z., Ma, X., Hu, Y., Li, J., & Bryant, D. (2012). A simulation study to improve quality of care in the emergency department of a community hospital. Journal of Emergency Nursing, 38, 322-328.
dc.rightsAtribución – No comercial – Compartir igual
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectSimulación de eventos discretos
dc.subjectAccidentes y emergencias
dc.subjectDepartamento de urgencias
dc.titleDiseño de un modelo de simulación para la mejora de la oportunidad de atención en urgencias de una Clínica de Barranquilla
dc.typeTrabajo de grado - Pregrado
dc.typehttp://purl.org/coar/resource_type/c_7a1f
dc.typeText
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/TP
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución