dc.creatorHernández Herrera, Hernan
dc.creatorSilva Ortega, Jorge I
dc.creatorMejia-Taboada, Mario
dc.creatorDiaz Jacome, Alfredo
dc.creatorTorregroza-Rosas, Melissa
dc.date2020-11-24T16:25:15Z
dc.date2020-11-24T16:25:15Z
dc.date2019
dc.date.accessioned2023-10-03T19:59:51Z
dc.date.available2023-10-03T19:59:51Z
dc.identifierhttps://hdl.handle.net/11323/7455
dc.identifierhttps://doi.org/10.1063/1.5116976
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173706
dc.descriptionNew requirements for a better sustainable energy policy around the world is easy to observe, many projects in sustainable energy are developed wherein the academia works together the authorities and commercial firms such as electrical grid utilities. In distribution transformers one of the suggested solutions is to replace mineral oils used as dielectric and coolant for natural ester fluids, they provide improved technical properties making them a safe substitute of mineral oil. Natural esters are based on clean technology in order to guarantee requirements from utilities. The main goal of the present paper is to present a technical-economic analysis obtained from five years of applications of oil-immersed transformers using natural ester fluids in Colombia. The methodology considers forty-four oil-immersed distribution Transformers, a half use mineral oil and the other side use natural ester, operating under the same load regime. Results evidenced the feasibility of implementing this technology because the costs are very similar and the reduction of risks and environmental impact is considerable. © 2019 Author(s).
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation1.Ab Ghani, S., Muhamad, N. A., Noorden, Z. A., Zainuddin, H., Abu Bakar, N., & Talib, M. A., “Methods for improving the workability of natural ester insulating oils in power transformer applications: A review”. Electric Power Systems Research. 163, 655–667, (2018). https://doi.org/10.1016/j.epsr.2017.10.008
dc.relation2.Delgado, F., Fernandez, I., Ortiz, F., Renedo, C., Ortiz, A., and Carcedo, J., “Thermal analysis of transformers insulation based on vegetable esters”. In 33rd Electrical Insulation Conference, EIC 2015, pp. 606–609. (2015).
dc.relation3.Mcshane, P., “Vegetable-Oil-Based Dielectric Coolants. IEEE Industry” Applications Magazine, 8(3), 34–41. (2002). https://doi.org/10.1109/2943.999611,
dc.relation4.Rycroft, M., “Vegetable oil as insulating fluid for transformers”. Energize, 37–40. (2014).
dc.relation5.Asano, Roberto, and Stephane A. Page. “Reducing environmental impact and improving safety and performance of power transformers with natural ester dielectric insulating fluids.” IEEE Transactions on Industry Applications 50 (1), 134–141. (2014) https://doi.org/10.1109/TIA.2013.2269532
dc.relation6.Ciuriuc, A., Vihacencu, M. S., Dumitran, L. M., and Notingher, P. V., “Comparative Study on Power Transformers Vegetable and Mineral Oil Ageing”. 2012 International Conference on Applied and Theoretical Electricity (ICATE). IEEE, (2012).
dc.relation7.Sagastume Gutiérrez, A., Cabello Eras, J. J., Sousa Santos, V., Hernández Herrera, H., Hens, L., and Vandecasteele, C. “Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia”. Journal of Cleaner Production, 198, 1443–1458. (2018). https://doi.org/10.1016/j.jclepro.2018.07.105
dc.relation8.CIGRE working group A2-35., “Experiences in Service with New Insulating Liquids”. United Kingdom: Zhongdong Wang (UK). (2010).
dc.relation9.EPA., OPPTS 835.3100. “Aerobic Aquatic Biodegradation. Fate, Transport and Transformation” Test Guidelines. (Thomas A. Edison Technical Center, Ed.). Franksville (USA): Cooper Power Systems. (1998).
dc.relation10.Hopkinson, P., “Progress Report On Natural Esters For Distribution And Power Transformers”. IEEE Power and Energy Society General Meeting IEEE, (2009).
dc.relation11.Li, J., Zhang, Z., Grzybowski, S., and Liu, Y., “Characteristics of Moisture Diffusion in Vegetable Oil-paper Insulation”, EEE Transactions on Dielectrics and Electrical Insulation 19 (5), 1650–1656. (2012) https://doi.org/10.1109/TDEI.2012.6311512
dc.relation12.Bashi, S. M., Abdullahi, U. U., Yunus, R., and Nordin, A., “Use of Natural Vegetable Oils as Alternative Dielectric Transformer Coolants”. Journal of the Institution of Engineers, Malaysia, 67(2), 4–9. (2006).
dc.relation13.Murphy, J. R., Member, S., and Graham, J., “Distribution Utility Experience with Natural Ester Dielectric Coolants”, 2009 IEEE Power & Energy Society General Meeting. IEEE, (2009).
dc.relation14.Mcshane, C. P., “Natural and Synthetic Ester Dielectric Fluids : Their Relative Environmental, Fire Safety, and Electrical Performance”. In 1999 IEEE Industrial and Commercial Power Systems Technical Conference pp. 1–8. (1999).
dc.relation15.Navas, D., Cadavid-Ramírez, H., and Echeverry-Ibarra, D. F. “Aplicación del aceite dieléctrico de origen vegetal en transformadores eléctricos”. Ingeniería y Universidad, 16(1), 201–223. (2012)
dc.relation16.Rebolledo, L. and, Guissela. A., “Evaluación de la viabilidad técnica y económica de la utilización del aceite dieléctrico vegetal como sustituyente del aceite dieléctrico mineral en transformadores de distribución nuevos y usados en las empresas municipales de Cali. BS thesis, Universidad Autónoma de Occidente.
dc.relation17.Silva-Ortega, J. I., Candelo-Becerra, J. E., Umaña-Ibañez, S. F., Mejia-Taboada, M. A., and Palacio-Bonill, A. R., “Power Distribution Transformers using Natural Ester Fluids as Dielectric and Coolant”. Inge Cuc, 12(2), 79–85. (2016). https://doi.org/10.17981/ingecuc.12.2.2016.08
dc.relation18.B Tokunaga, Junko, et al. “Palm fatty acid ester as biodegradable dielectric fluid in transformers: a review.” IEEE Electrical Insulation Magazine 35.2 34–46. (2019): https://doi.org/10.1109/MEI.2019.8636104
dc.relation19.IEC, IEC 62770. Fluids for electrotechnical applications – Unused natural esters for transformers and similar electrical equipment. Geneva, Switzerland, 2013, p. 38.
dc.relation20.ASTM. D6871-03: Standard Specification for Natural (Vegetable Oil) Ester Fluids Used in Electrical Apparatus, 10ASTM 14–16, 2003.
dc.relation21.Arief, Y. Z., Ahmad, M. H., Lau, K. Y., and Oil, A. T., “A Comparative Study on the Effect of Electrical Ageing on Electrical Properties of Palm Fatty Acid Ester (PFAE) and FR3 as Dielectric Materials”, IEEE International Conference on Power and Energy (PECon). IEEE, 128–133. 2014.
dc.relation22.Cargill. EnvirotempTM FR3TM Fluid. R2020 Reference Data. (2013).
dc.relation23.GlobalTox International Consultants. Final Report: Acute Trout Toxicity Testing for Two Envirotemp FR3 Formulations, (2). (1999).
dc.relation24.Aluyor, E. O., Obahiagbon, K. O., and Ori-jesu, M., “Biodegradation of vegetable oils : A review”. Scientific Research and Essays, 4(6), 543–548. (2009).
dc.relation25.Fofana, I., 2013. “50 Years in the Development of Insulating Liquids”, IEEE Electrical Insulation Magazine 29(5), 13–25, (2013). https://doi.org/10.1109/MEI.2013.6585853
dc.relation26.Brettis. “Aceites Para Transformadores”, Modulo 8. Retrieved from http://www.brettis.com/Tutorial/08Transformadores.pdf. (2013).
dc.relation27.Singha, Santanu, et al. “Comparative aging characteristics between a high oleic natural ester dielectric liquid and mineral oil.” IEEE Transactions on Dielectrics and Electrical Insulation 21.1 (2014): 149–158. https://doi.org/10.1109/TDEI.2013.003713 Villardi, H. GD., Leal, M. F., Andrade, P. H. D. A., Fernando, L. P., and Salgado, A. M. “Study of the Production of Ethyl Esters of Soybean Industry Using Waste Acid with and without Catalyst”. Chemical EngineeringTransactions, 57, 163–168. (2017).
dc.relation28.Chistyakov, A. V., Tsodikov, M. V., Zharova, P. A., Kriventsov, V. V., Corbetta, M., and Manenti, F. “The direct hydrodeoxygenation of vegetable oil over Pt-Sn/Al2O3 catalysts”. Chemical Engineering Transactions, 57, 871–876. (2017).
dc.relation29.Congreso de Colombia. Ley N° 1715 Del 13 De Mayo De 2014,2014, Colombia. Retrieved from http://www.upme.gov.co/Normatividad/Nacional/2014/LEY_1715_2014.pdf
dc.relation30.UPME. Res. 0536 - 2012 2012, Colombia. Retrieved from http://www1.upme.gov.co/Documents/Normatividad/Resoluciones/RES._0563.pdf.
dc.relation31.Arfaoui, A., Polidori, G., Taiar, R., and Popa, C., “Infrared Thermography in Sports Activity”. In Infrared Thermography, 141–168. (2012).
dc.relation32.ASTM. D3487-16: Standard Specification for Mineral Insulating Oil Used in Electrical Apparatus, 2016.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceInternational Conference on Data Mining and Big Data
dc.subjectDistribution transformers
dc.subjectMineral Oil
dc.subjectNatural ester fluids
dc.subjectsafety operation in power distribution system
dc.titleNatural ester fluids applications in transformers as a sustainable dielectric and coolant
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución