dc.creatorHenn, Alessandra Schneider
dc.creatorFrohlich, Angelica Chaiani
dc.creatorPedrotti, Matheus Felipe
dc.creatorHagemann Cauduro, Vitoria
dc.creatorOliveira Silva, Marcos Leandro
dc.creatorFlores de Moraes, Erico Marlon
dc.creatorBizzi, Cezar Augusto
dc.date2022-06-21T15:39:41Z
dc.date2022-06-21T15:39:41Z
dc.date2021-12-28
dc.date.accessioned2023-10-03T19:59:49Z
dc.date.available2023-10-03T19:59:49Z
dc.identifierHenn, Alessandra S., Angelica C. Frohlich, Matheus F. Pedrotti, Vitoria H. Cauduro, Marcos L.S. Oliveira, Erico M.d.M. Flores, and Cezar A. Bizzi. 2022. "Microwave-Assisted Solid Sampling Analysis Coupled to Flame Furnace Atomic Absorption Spectrometry for Cd and Pb Determination in Food-Contact Polymers" Sustainability 14, no. 1: 291. https://doi.org/10.3390/su14010291
dc.identifierhttps://hdl.handle.net/11323/9275
dc.identifierhttps://doi.org/10.3390/su14010291
dc.identifier10.3390/su14010291
dc.identifier2071-1050
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173703
dc.descriptionMicrowave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry (MW-SS-FF-AAS) was used for Cd and Pb determination in food-contact polymer samples, with the aim of minimizing reagents and laboratory waste. Operational parameters, such as the FF tube design, the oxygen flow rate, the flame stoichiometry, the sample mass, among others, were evaluated and optimized. Calibration was performed using only reference solutions, and the limits of quantification were 1.7 and 4.6 µg g−1 for Cd and Pb, respectively. Accuracy was assessed by the analysis of certified reference materials (CRMs), and by comparison with the results obtained by inductively coupled plasma mass spectrometry after microwave-assisted wet digestion. The MW-SS-FF-AAS results for the CRMs showed no statistical difference with the certified values, and good agreement was observed with the results of the digestion method. The MW-SS-FF-AAS method was considered suitable for Cd and Pb determination in food-contact polymers. The concentrations of Cd and Pb in the analyzed samples varied from <1.7 to 628 µg g−1, and from <4.6 to 614 µg g−1, respectively. As sample digestion is not necessary, the use of concentrated acids can be avoided by using the proposed MW-SS-FF-AAS method, greatly reducing waste generation. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
dc.format12 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherMDPI AG
dc.publisherSwitzerland
dc.relationSustainability
dc.relation1. Barone, C.; Bolzoni, L.; Caruso, G.; Montanari, A.; Parisi, S.; Steinka, I. Food Packaging Hygiene; Springer International Publishing: Cham, Switzerland, 2015; p. 132.
dc.relation2. Bart, J.C.J. Additives in Polymers: Industrial Analysis and Applications; Wiley: Chichester, UK, 2005.
dc.relation3. Groh, K.J.; Geueke, B.; Martin, O.; Maffini, M.; Muncke, J. Overview of intentionally used food contact chemicals and their hazards. Environ. Int. 2021, 150, 106225. [CrossRef] [PubMed]
dc.relation4. Cherif Lahimer, M.; Ayed, N.; Horriche, J.; Belgaied, S. Characterization of plastic packaging additives: Food contact, stability and toxicity. Arab. J. Chem. 2017, 10, S1938–S1954. [CrossRef]
dc.relation5. Perring, L.; Alonso, M.-I.; Andrey, D.; Bourqui, B.; Zbinden, P. An evaluation of analytical techniques for determination of lead, cadmium, chromium, and mercury in food-packaging materials. Fresenius’ J. Anal. Chem. 2001, 370, 76–81. [CrossRef] [PubMed]
dc.relation6. Pereira, J.S.F.; Knorr, C.L.; Pereira, L.S.F.; Moraes, D.P.; Paniz, J.N.G.; Flores, E.M.M.; Knapp, G. Evaluation of sample preparation methods for polymer digestion and trace elements determination by ICPMS and ICPOES. J. Anal. At. Spectrom. 2011, 26, 1849–1857. [CrossRef]
dc.relation7. Pereira, L.S.F.; Pedrotti, M.F.; Miceli, T.M.; Pereira, J.S.F.; Flores, E.M.M. Determination of elemental impurities in poly(vinyl chloride) by inductively coupled plasma optical emission spectrometry. Talanta 2016, 152, 371–377. [CrossRef] [PubMed]
dc.relation8. Moraes, D.P.; Pereira, J.S.F.; Diehl, L.O.; Mesko, M.F.; Dressler, V.L.; Paniz, J.N.G.; Knapp, G.; Flores, E.M.M. Evaluation of sample preparation methods for elastomer digestion for further halogens determination. Anal. Bioanal. Chem. 2010, 397, 563–570. [CrossRef]
dc.relation9. Ritter, A.; Michel, E.; Schmid, M.; Affolter, S. Interlaboratory test on polymers: Determination of heavy metals in polymer metrices. Polym. Test. 2004, 23, 467–474. [CrossRef]
dc.relation10. Flores, E.M.M. Microwave-Assisted Sample Preparation for Trace Element Determination; Elsevier: Amsterdam, The Netherlands, 2014.
dc.relation11. Voss, M.; Nunes, M.A.G.; Corazza, G.; Flores, E.M.M.; Muller, E.I.; Dressler, V.L. A new approach to calibration and determination of selected trace elements in food contact polymers by LA-ICP-MS. Talanta 2017, 170, 488–495. [CrossRef]
dc.relation12. Aramendía, M.; Resano, M.; Vanhaecke, F. Electrothermal vaporization–inductively coupled plasma-mass spectrometry: A versatile tool for tackling challenging samples: A critical review. Anal. Chim. Acta 2009, 648, 23–44. [CrossRef]
dc.relation13. Welz, B.; Sperling, M. Atomic Absorption Spectrometry, 3rd ed.; Wiley: Weinheim, UK, 1999.
dc.relation14. Welz, B. Atomic absorption spectrometry—Pregnant again after 45 years. Spectrochim. Acta Part. B At. Spectrosc. 1999, 54, 2081–2094. [CrossRef]
dc.relation15. Flores, E.M.M.; Paniz, J.N.G.; Martins, A.F.; Dressler, V.L.; Muller, E.I.; Costa, A.B. Cadmium determination in biological samples by direct solid sampling flame atomic absorption spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 2002, 57, 2187–2193. [CrossRef]
dc.relation16. Costa, A.B.; Mattos, J.C.P.; Muller, E.I.; Paniz, J.N.G.; Dressler, V.L.; Flores, E.M.M. Use of paper capsules for cadmium determination in biological samples by solid sampling flame atomic absorption spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 2005, 60, 583–588. [CrossRef]
dc.relation17. Flores, E.M.M.; Saidelles, A.P.F.; Mattos, J.C.P.; Muller, E.I.; Pereira, J.S.F.; Paniz, J.N.G.; Dressler, V.L. Determination of Cd and Pb in medicinal plants using solid sampling flame atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2009, 89, 129–140. [CrossRef]
dc.relation18. Flores, E.M.M.; Costa, A.B.; Barin, J.S.; Dressler, V.L.; Paniz, J.N.G.; Martins, A.F. Direct flame solid sampling for atomic absorption spectrometry: Determination of copper in bovine liver. Spectrochim. Acta Part. B At. Spectrosc. 2001, 56, 1875–1882. [CrossRef]
dc.relation19. Bizzi, C.A.; Paniz, J.N.G.; Rodrigues, L.F.; Dressler, V.L.; Flores, E.M.M. Solid sampling coupled to flame furnace atomic absorption spectrometry for Mn and Ni determination in petroleum coke. Microchem. J. 2010, 96, 64–70. [CrossRef]
dc.relation20. Magalhaes, C.E.C.; Krug, F.J.; Fostier, A.H.; Berndt, H. Direct determination of mercury in sediments by atomic absorption spectrometry. J. Anal. At. Spectrom. 1997, 12, 1231–1234. [CrossRef]
dc.relation21. Kantor, T.; Fodor, P.; Pungor, E. Determination of traces of lead, cadmium and zinc in copper by an arc-nebulization and flame atomic absorption technique. Anal. Chim. Acta 1978, 102, 15–23. [CrossRef]
dc.relation22. Barin, J.S.; Bartz, F.R.; Dressier, V.L.; Paniz, J.N.; Flores, E.M.M. Microwave-induced combustion coupled to flame furnace atomic absorption spectrometry for determination of cadmium and lead in botanical samples. Anal. Chem. 2008, 80, 9369–9374. [CrossRef]
dc.relation23. Hoehne, L.; Bartz, F.R.; Bizzi, C.A.; Paniz, J.N.G.; Dressler, V.L.; Flores, E.M.M. Determination of Cd in blood by microwaveinduced combustion coupled to flame furnace atomic absorption spectrometry. J. Braz. Chem. Soc. 2010, 21, 978–984. [CrossRef]
dc.relation24. Henn, A.S.; Frohlich, A.C.; Pedrotti, M.F.; Duarte, F.A.; Paniz, J.N.G.; Flores, E.M.M.; Bizzi, C.A. Microwave-assisted solid sampling system for Hg determination in polymeric samples using FF-AAS. Microchem. J. 2019, 147, 463–468. [CrossRef]
dc.relation25. Barin, J.S.; Pereira, J.S.F.; Mello, P.A.; Knorr, C.L.; Moraes, D.P.; Mesko, M.F.; Nóbrega, J.A.; Korn, M.G.A.; Flores, E.M.M. Focused microwave-induced combustion for digestion of botanical samples and metals determination by ICP OES and ICP-MS. Talanta 2012, 94, 308–314. [CrossRef] [PubMed]
dc.relation26. Gaspar, A.; Berndt, H. Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS)—A simple method for trace element determination with microsamples in the µg/L concentration range. Spectrochim. Acta Part. B At. Spectrosc. 2000, 55, 587–597. [CrossRef]
dc.relation27. Gaspar, A.; Berndt, H. Beam Injection Flame Furnace Atomic Absorption Spectrometry: A New Flame Method. Anal. Chem. 2000, 72, 240–246. [CrossRef] [PubMed]
dc.relation28. Nascentes, C.C.; Kamogawa, M.Y.; Fernandes, K.G.; Arruda, M.A.Z.; Nogueira, A.R.A.; Nobrega, J.A. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 2005, 60, 749–753. [CrossRef]
dc.relation29. Campos, R.C.; Curtius, A.J.; Berndt, H. Combustion and volatilisation of solid samples for direct atomic absorption spectrometry using silica or nickel tube furnace atomisers. J. Anal. At. Spectrom. 1990, 5, 669–673. [CrossRef]
dc.relation30. Rodrigues, L.F.; Mattos, J.C.P.; Bolzan, R.C.; Flores, E.M.M.; Duarte, F.A. Determination of trace elements in raw material for polyurethane production using direct sampling graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom. 2014, 29, 324–331. [CrossRef]
dc.relation31. Belarra, M.A.; Crespo, C.; Martínez-Garbayo, M.P.; Castillo, J.R. Direct determination of metals in solid samples by graphitefurnace atomic absorption spectrometry: Does sample mass influence the analytical results? Spectrochim. Acta Part. B At. Spectrosc. 1997, 52, 1855–1860. [CrossRef]
dc.relation291
dc.relation14
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.mdpi.com/2071-1050/14/1/291
dc.subjectPolymer analysis
dc.subjectMW-SS-FF-AAS
dc.subjectSolid sampling
dc.subjectMicrowave-induced combustion
dc.subjectToxic element determination
dc.titleMicrowave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución