dc.creatorAcosta-Coll, Melisa
dc.creatorSolano-Escorcia, Andres
dc.creatorOrtega-Gonzalez, Lilia
dc.creatorZamora-Musa, Ronald
dc.date2021-06-29T21:42:37Z
dc.date2021-06-29T21:42:37Z
dc.date2021
dc.date.accessioned2023-10-03T19:59:38Z
dc.date.available2023-10-03T19:59:38Z
dc.identifierhttps://hdl.handle.net/11323/8439
dc.identifierhttp://doi.org/10.11591/ijece.v11i5.pp4143-4156
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173668
dc.descriptionFluvial flooding occurs when a river overspills its banks due to excessive rainfall, and it is the most common flood event. In urban areas, the increment of urbanization makes communities more susceptible to fluvial flooding since the excess of impervious surfaces reduced the natural permeable areas. As flood prevention strategies, early warning systems (EWS) are used to reduce damage and protect people, but key elements need to be selected. This manuscript proposes the monitoring instruments, communication protocols, and media to forecast and disseminate EWS alerts efficiently during fluvial floods in urban areas. First, we conducted a systematic review of different EWS architectures for fluvial floods in urban areas and identified that not all projects monitor the most important variables related to the formation of fluvial floods and most use communication protocols with high-energy consumption.ZigBee and LoRaWAN are the communication protocols with lower power consumption from the review, and to determine which technology has better performance in urban areas, two wireless sensor networks were deployed and simulated in two urban areas susceptible to fluvial floods using Radio Mobile software. The results showed that although Zigbee technology has better-received signal strength, the difference with LoRAWAN is lower than 2dBm, but LoRaWAN has a better signal-to-noise ratio, power consumption, coverage, and deployment cost.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.relationCRED and UNISDR, “The Human Cost of Weather Related Disasters 1995-2015,” 2015.[Online]. Available: https://www.unisdr.org/files/46796_cop21weatherdisastersreport2015.pdf.
dc.relationInternational Strategy for Disaster Reduction (ISDR), “Emerging Challenges for Early Warning Systems in context of Climate Change and Urbanization,” Switzerland, 2010. [Online]. Available: http://www.preventionweb.net/ files/15689_ewsincontextofccandurbanization.pdf.
dc.relationJ. D. Miller and M. Hutchins, “The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom,” J. Hydrol. Reg. Stud., vol. 12, pp. 345–362, 2017, doi: 10.1016/j.ejrh.2017.06.006.
dc.relationH. Apel, O. M. Trepat, N. N. Hung, D. T. Chinh, B. Merz, and N. V. Dung, “Combined fluvial and pluvial urban flood hazard analysis: Concept development and application to Can Tho city, Mekong Delta, Vietnam,” Natural Hazards and Earth System Sciences.,vol. 16, no. 4, pp. 941–961, 2016, doi: 10.5194/nhess-16-941-2016.
dc.relationWorld Resources Institute (WRI), “World’s 15 Countries with the Most People Exposed to River Floods,” 2015. [Online]. Available: https://www.wri.org/blog/2015/03/world-s-15-countries-most-people-exposed-river-floods.
dc.relationCRED, “Natural Disasters,” 2015. [Online]. Available: https://www.emdat.be/.
dc.relationS. Bae and H. Chang, “Urbanization and floods in the Seoul Metropolitan area of South Korea: What old maps tell us,” Int. J. Disaster Risk Reduct., vol. 37, Jul.,2019, Art. No. 101186, doi: 10.1016/j.ijdrr.2019.101186.
dc.relationJ. Du, L. Cheng, Q. Zhang, Y. Yang, and W. Xu, “Different Flooding Behaviors Due to Varied Urbanization Levels within River Basin: A Case Study from the Xiang River Basin, China,” Int. J. Disaster Risk Sci, vol. 10, pp. 89–102, 2019, doi: 10.1007/s13753-018-0195-4.
dc.relationY. Anker et al., “Effect of rapid urbanization on Mediterranean karstic mountainous drainage basins,” Sustain. Cities Soc., vol. 51, Nov. 2019, Art. No. 101704, doi: 10.1016/j.scs.2019.101704.
dc.relationUNDESA, “World Population Prospects. The 2017 Revision. Key Findings and Advance Tables,” United Nations Department of Economic and Social Affairs, New York, ESA/P/WP/248, 2017. [Online]. Available: https://population.un.org/wpp/Publications/Files/WPP2017_KeyFindings.pdf.
dc.relationS. J. McGrane, “Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review,” Hydrol. Sci. J., vol. 61, no. 13, pp. 2295–2311, 2016, doi: 10.1080/02626667.2015.1128084.
dc.relationWorld Meteorological Organization, “Guidelines on Early Warning Systems and Application of Nowcasting and Warning Operations,” 2010. [Online]. Available: https://library.wmo.int/doc_num.php?explnum_id=9456.
dc.relationM. Acosta-Coll, F. Ballester-Merelo, and M. Martinez-Peiro, “Early warning system for detection of urban pluvial flooding hazard levels in an ungauged basin,” Nat. Hazards, vol. 92, pp. 1237–1265, 2018, doi: 10.1007/s11069-018-3249-4.
dc.relationM. Acosta-Coll, F. Ballester-Merelo, M. Martinez-Peiro, and E. de la Hoz-Franco, “Real-Time Early Warning System Design for Pluvial Flash Floods—A Review,” Sensors, vol. 18, no. 7, 2018, Art. No. 2255, doi: 10.3390/s18072255.
dc.relationS. E. Shumate, “Longley-Rice and ITU-P.1546 Combined: A New International Terrain-Specific Propagation Model,” 2010 IEEE 72nd Vehicular Technology Conference,Ottawa, Canada, 2010, pp. 1–5, doi: 10.1109/VETECF.2010.5594342.
dc.relationGobernación del Atlántico, “Plan de Desarrollo 2020-2023,” Gobernación del Atlántico, Colombia, 2020. [Online]. Available:https://www.atlantico.gov.co/images/stories/plan_desarrollo/PlanDesarrollo_2020-2023-Definitivo-A1.pdf.
dc.relationF. C. C. Garcia, A. E. Retamar, and J. C. Javier, “Development of a predictive model for on-demandremote river level nowcasting: Case study in Cagayan River Basin, Philippines,” 2016 IEEE Region 10 Conference (TENCON), Singapore, 2016, pp. 3275–3279, doi: 10.1109/TENCON.2016.7848657.
dc.relationV. Balaji, A. Akshaya, N. Jayashree, and T. Karthika, “Design of ZigBee based wireless sensor network for early flood monitoring and warning system,” in 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), Chennai, 2017, pp. 236–240, doi: 10.1109/TIAR.2017.8273723.
dc.relationH. N. Do, M. Vo, V. Tran, P. V. Tan, and C. V. Trinh, “An early flood detection system using mobile networks,” in 2015 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh, Vietnam, 2015, pp. 599–603, doi: 10.1109/ATC.2015.7388400.
dc.relationA. Dersingh, “Design and development of a flood warning system via mobile and computer networks,” in 2016 International Conference on Electronics, Information, and Communications (ICEIC), Danang, Vietnam, 2016, pp. 1–4, doi: 10.1109/ELINFOCOM.2016.7563023.
dc.relationV. Vunabandi, R. Matsunaga, S. Markon, and N. Willy, “Flood sensing framework by Arduino and Wireless Sensor Network in Rural-Rwanda,” in 2015 IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Takamatsu, 2015, pp. 1–6, doi: 10.1109/SNPD.2015.7176210.
dc.relationM. A. Islam, T. Islam, M. A. Syrus, and N. Ahmed, “Implementation of flash flood monitoring system based on wireless sensor network in Bangladesh,” in 2014 International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, 2014, pp. 1–6, doi: 10.1109/ICIEV.2014.6850752.
dc.relationF. Khan, S. Memon, I. A. Jokhio, and S. H. Jokhio, “Wireless sensor network based flood/drought forecasting system,” in 2015 IEEE SENSORS, Busan, 2015, pp. 1–4, doi: 10.1109/ICSENS.2015.7370354.
dc.relationE. Leon, C. Alberoni, M. Wister, and J. A. Hernandez-Nolasco, “Flood Early Warning System by Twitter Using LoRa,” Proceedings, vol. 2, no. 19,2018, Art. No. 1213, doi: 10.3390/proceedings2191213.
dc.relationJ. D. Guillot, C. A. Robles, and J. D. Callejas, “Adquisición de Señales Ambientales para un Sistema de Alerta Temprana,” Inf. Tecnológica, vol. 28, no. 5, pp. 45–54, 2017, doi: 10.4067/S0718-07642017000500007.
dc.relationR. Castillo and J. C. Espitia, “Caracterización de zonas de riesgo por crecientes de ríos de bajo caudal, para la implementación de un sistema de alertas tempranas (SAT) con tecnología LoRa y LoRaWAN,” Inf. Tecnológica, vol. 31, no. 2, pp. 47–54, 2020, doi: 10.4067/S0718-07642020000200047.
dc.relationL. Kolobe, B. Sigweni, and C. K. Lebekwe, “Systematic literature survey: applications of LoRa communication,” International Journal of Electrical and Computer Engineering(IJECE),vol. 10, no. 3, pp. 3176–3183, 2020, doi: 10.11591/ijece.v10i3.pp3176-3183
dc.relationE. Ramirez-Cerpa, M. Acosta-Coll, and J. Velez-Zapata, “Análisis de condiciones climatológicas de precipitaciones de corto plazo en zonas urbanas: caso de estudio Barranquilla, Colombia,” Rev. IDESIA, vol. 35, no. 2, pp. 87–94, 2017, doi: 10.4067/S0718-34292017005000023.
dc.relationR. Lam et al., “Urban disaster preparedness of Hong Kong residents: A territory-wide survey,” Int J Disaster Risk Reduct, vol. 23, pp. 62–69, 2017, doi: 10.1016/j.ijdrr.2017.04.008.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceInternational Journal of Electrical and Computer Engineering
dc.sourcehttp://ijece.iaescore.com/index.php/IJECE/article/view/25405
dc.subjectDisemination
dc.subjectEarly warning system
dc.subjectFluvial flooding
dc.subjectForecasting
dc.subjectLoRaWAN
dc.subjectZigbee
dc.titleForecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución