dc.creator | Ortíz-Barrios, Miguel | |
dc.creator | Petrillo, Antonella | |
dc.creator | De Felice, Fabio | |
dc.creator | Jaramillo-Rueda, Natalia | |
dc.creator | Jiménez-Delgado, Genett | |
dc.creator | Borrero-López, Luz | |
dc.date | 2021-07-14T13:04:49Z | |
dc.date | 2021-07-14T13:04:49Z | |
dc.date | 2021-05-31 | |
dc.date.accessioned | 2023-10-03T19:59:13Z | |
dc.date.available | 2023-10-03T19:59:13Z | |
dc.identifier | 2076-3417 | |
dc.identifier | https://hdl.handle.net/11323/8466 | |
dc.identifier | https://doi.org/10.3390/app11115107 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9173604 | |
dc.description | Scheduling flexible job-shop systems (FJSS) has become a major challenge for different smart factories due to the high complexity involved in NP-hard problems and the constant need to satisfy customers in real time. A key aspect to be addressed in this particular aim is the adoption of a multi-criteria approach incorporating the current dynamics of smart FJSS. Thus, this paper proposes an integrated and enhanced method of a dispatching algorithm based on fuzzy AHP (FAHP) and TOPSIS. Initially, the two first steps of the dispatching algorithm (identification of eligible operations and machine selection) were implemented. The FAHP and TOPSIS methods were then integrated to underpin the multi-criteria operation selection process. In particular, FAHP was used to calculate the criteria weights under uncertainty, and TOPSIS was later applied to rank the eligible operations. As the fourth step of dispatching the algorithm, the operation with the highest priority was scheduled together with its initial and final time. A case study from the smart apparel industry was employed to validate the effectiveness of the proposed approach. The results evidenced that our approach outperformed the current company’s scheduling method by a median lateness of 3.86 days while prioritizing high-throughput products for earlier delivery. View Full-Text | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | 1. Fu, Y.; Hou, Y.; Wang, Z.; Gao, K.; Wang, L. Distributed scheduling problems in intelligent manufacturing systems. Tsinghua Sci. Technol. 2021, 26, 625–645. [CrossRef] | |
dc.relation | 2. Rahman, H.F.; Janardhanan, M.N.; Chuen, L.P.; Ponnambalam, S.G. Flowshop scheduling with sequence dependent setup times
and batch delivery in supply chain. Comput. Ind. Eng. 2021, 158, 107378. [CrossRef] | |
dc.relation | 3. Hakeem-Ur-Rehman; Wan, G.; Zhan, Y. Multi-level, multi-stage lot-sizing and scheduling in the flexible flow shop with demand
information updating. Int. Trans. Oper. Res. 2021, 28, 2191–2217. [CrossRef] | |
dc.relation | 4. Khalid, Q.S.; Azim, S.; Abas, M.; Babar, A.R.; Ahmad, I. Modified particle swarm algorithm for scheduling agricultural products.
Eng. Sci. Technol. Int. J. 2021, 24, 818–828. | |
dc.relation | 5. De Lacalle, L.N.L.; Lamikiz, A.; Salgado, M.A.; Herranz, S.; Rivero, A. Process planning for reliable high-speed machining of
moulds. Int. J. Prod. Res. 2002, 40, 2789–2809. [CrossRef] | |
dc.relation | 6. Che, Y.; Hu, K.; Zhang, Z.; Lim, A. Machine scheduling with orientation selection and two-dimensional packing for additive
manufacturing. Comput. Oper. Res. 2021, 130, 105245. [CrossRef] | |
dc.relation | 7. Lamikiz, A.; de Lacalle, L.N.L.; Sánchez, J.A.; Salgado, M.A. Cutting force integration at the CAM stage in the high-speed milling
of complex surfaces. Int. J. Comput. Integr. Manuf. 2005, 18, 586–600. [CrossRef] | |
dc.relation | 8. Wang, C.; Li, Y.; Li, X. Solving flexible job shop scheduling problem by a multi-swarm collaborative genetic algorithm. J. Syst.
Eng. Electron. 2021, 32, 261–271. | |
dc.relation | 9. Sangaiah, A.K.; Suraki, M.Y.; Sadeghilalimi, M.; Hosseinabadi, A.A.R.; Wang, J. A new meta-heuristic algorithm for solving the
flexible dynamic job-shop problem with parallel machines. Symmetry 2019, 11, 165. [CrossRef] | |
dc.relation | 10. Vargas, J.; Calvo, R. Joint optimization of process flow and scheduling in service-oriented manufacturing systems. Materials 2018, 11, 1559. [CrossRef] | |
dc.relation | 11. Fattahi, P.; Fallahi, A. Dynamic scheduling in flexible job shop systems by considering simultaneously efficiency and stability.
CIRP J. Manuf. Sci. Technol. 2020, 2, 114–123. [CrossRef] | |
dc.relation | 12. Wu, Z.; Weng, M.X. Multiagent scheduling method with earliness and tardiness objectives in flexible job shops. IEEE Trans. Syst.
Man Cybern. Part B Cybern. 2005, 35, 293–301. [CrossRef] | |
dc.relation | 13. Cerve ˇnansk ˇ á, Z.; Važan, P.; Juhás, M.; Juhásová, B. Multi-criteria optimization in operations scheduling applying selected priority
rules. Appl. Sci. 2021, 11, 2783. [CrossRef] | |
dc.relation | 14. Sun, L.; Lin, L.; Gen, M.; Li, H. A hybrid cooperative coevolution algorithm for fuzzy flexible job shop scheduling. IEEE Trans.
Fuzzy Syst. 2019, 27, 1008–1022. [CrossRef] | |
dc.relation | 15. Gen, M.; Lin, L.; Zhang, W. Multiobjective hybrid genetic algorithms for manufacturing scheduling: Part I models and algorithms.
Adv. Intell. Syst. Comput. 2015, 362, 3–25. | |
dc.relation | 16. Li, Y.; Carabelli, S.; Fadda, E.; Tadei, R.; Terzo, O. Machine learning and optimization for production rescheduling in Industry 4.0.
Int. J. Adv. Manuf. Technol. 2020, 110, 2445–2463. [CrossRef] | |
dc.relation | 17. Ghaleb, M.; Zolfagharinia, H.; Taghipour, S. Real-time production scheduling in the Industry-4.0 context: Addressing uncertainties
in job arrivals and machine breakdowns. Comput. Oper. Res. 2020, 123, 105031. [CrossRef] | |
dc.relation | 18. Mihoubi, B.; Bouzouia, B.; Gaham, M. Reactive scheduling approach for solving a realistic flexible job shop scheduling problem.
Int. J. Prod. Res. 2020, 1–19. [CrossRef] | |
dc.relation | 19. Lim, C.H.; Moon, S.K.; Okpoti, E.S. A Reusable Scheduling Problem Decomposition Framework for Smart Factories. In
Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management, Macao, China, 15–18
December 2019; pp. 516–520. | |
dc.relation | 20. Vazan, P.; Cervenanska, Z.; Kotianova, J.; Krizanova, G. The impact of selected priority rules on production goals. In Proceedings
of the 2019 20th International Carpathian Control Conference, Krakow-Wieliczka, Poland, 26–29 May 2019. | |
dc.relation | 21. Ma, A.; Nassehi, A.; Snider, C. Anarchic manufacturing. Int. J. Prod. Res. 2019, 57, 2514–2530. [CrossRef] | |
dc.relation | 22. Dolgui, A.; Ivanov, D.; Sethi, S.P.; Sokolov, B. Scheduling in production, supply chain and Industry 4.0 systems by optimal control:
Fundamentals, state-of-the-art and applications. Int. J. Prod. Res. 2019, 57, 411–432. [CrossRef] | |
dc.relation | 23. Heger, J.; Voß, T. Dynamic priority based dispatching of AGVs in flexible job shops. Procedia CIRP 2019, 79, 445–449. [CrossRef] | |
dc.relation | 24. Murín, S.; Rudová, H. Scheduling of Mobile Robots Using Constraint Programming. Lect. Notes Comput. Sci. 2019, 456–471. | |
dc.relation | 25. Kim, J.W.; Kim, S.K. Interactive job sequencing system for small make-to-order manufacturers under smart manufacturing
environment. Peer Peer Netw. Appl. 2019. [CrossRef] | |
dc.relation | 26. Alves, F.; Varela, M.L.R.; Rocha, A.M.A.C.; Pereira, A.I.; Leitão, P. A human centred hybrid MAS and meta-heuristics based
system for simultaneously supporting scheduling and plant layout adjustment. FME Trans. 2019, 47, 699–710. [CrossRef] | |
dc.relation | 27. Gozali, L.; Kurniawan, V.; Nasution, S.R. Design of Job Scheduling System and Software for Packaging Process with SPT. EDD.
LPT. CDS and NEH algorithm at PT. ACP. IOP Conf. Ser. Mater. Sci. Eng. 2019, 528, 012045. [CrossRef] | |
dc.relation | 28. Lunardi, W.T.; Voos, H.; Cherri, L.H. An Imperialist Competitive Algorithm for a Real-World Flexible Job Shop Scheduling
Problem. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, Turin,
Italy, 4–7 September 2018; pp. 402–409. | |
dc.relation | 29. Ortíz-Barrios, M.; Neira-Rodado, D.; Jiménez-Delgado, G.; Hernández-Palma, H. Using fahp-vikor for operation selection in the
flexible job-shop scheduling problem: A case study in textile industry. Lect. Notes Comput. Sci. 2018. [CrossRef] | |
dc.relation | 30. Wang, C.; Jiang, P.; Lu, T. The production instruction system for smart job shop. In Proceedings of the IEEE International
Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016; pp. 1850–1854. | |
dc.relation | 31. Bouazza, W.; Sallez, Y.; Beldjilali, B. A distributed approach solving partially flexible job-shop scheduling problem with a
Q-learning effect. IFAC PapersOnLine 2017, 50, 15890–15895. [CrossRef] | |
dc.relation | 32. Ivanov, D.; Dolgui, A.; Sokolov, B. A Dynamic Approach to Multi-stage Job Shop Scheduling in an Industry 4.0-Based Flexible
Assembly System. IFIP Adv. Inf. Commun. Technol. 2017, 513, 475–482. | |
dc.relation | 33. Son, D.S.; Lee, Y.H.; Shin, Y.W.; Moon, D.H. A simulation study on a flexible manufacturing systems for producing aircraft engine
parts (WIP). Simul. Ser. 2017, 49, 205–210. | |
dc.relation | 34. Yuan, G.C.; Bao, J.S.; Zhang, Q.W.; Li, Z.Q. An intelligent scheduling method for manufacturing system based on M2M. In
Proceedings of the International Conference on Computers and Industrial Engineering, CIE, Lisbon, Portugal, 11–13 October
2017. | |
dc.relation | 35. Jacob, E.; Astorga, J.; Unzilla, J.J.; García, D.; López-De-Lacalle, L.N. Towards a 5G compliant and flexible connected manufacturing
facility | [Hacia una infraestructura de fabricación flexible, conectada e integrable en redes 5G]. Dyna 2018, 93, 656–662. [CrossRef] | |
dc.relation | 36. Tian, S.; Wang, T.; Zhang, L.; Wu, X. The Internet of Things enabled manufacturing enterprise information system design and
shop floor dynamic scheduling optimisation. Enterp. Inf. Syst. 2020, 14, 1238–1263. [CrossRef] | |
dc.relation | 37. Zhao, F.; Hong, Y.; Yu, D.; Yang, Y.; Zhang, Q. A hybrid particle swarm optimisation algorithm and fuzzy logic for process
planning and production scheduling integration in holonic manufacturing systems. Int. J. Comput. Integr. Manuf. 2010, 23, 20–39.
[CrossRef] | |
dc.relation | 38. Chen, Y.; Huang, C.; Chou, F.-D.; Huang, S. Single-machine scheduling problem with flexible maintenance and non-resumable
jobs to minimise makespan. IET Collab. Intell. Manuf. 2020, 2, 174–181. [CrossRef] | |
dc.relation | 39. Paprocka, I.; Kampa, A.; Gołda, G. The effects of a machine failure on the robustness of job shop systems-the predictive-reactive
approach. Int. J. Mod. Manuf. Technol. 2019, 11, 72–79. | |
dc.relation | 40. Kaya, ˙I.; Erdo ˘gan, M.; Kara¸san, A.; Özkan, B. Creating a road map for industry 4.0 by using an integrated fuzzy multicriteria
decision-making methodology. Soft Comput. 2020, 24, 17931–17956. [CrossRef] | |
dc.relation | 41. De Andrade, J.M.M.; De Leite, A.F.C.S.M.; Canciglieri, M.B.; De Loures, E.F.R.; Canciglieri, O. A multi-criteria approach for FMEA
in product development in industry 4.0. Adv. Transdiscipl. Eng. 2020, 12, 311–320. | |
dc.relation | 42. Yıldızba¸sı, A.; Ünlü, V. Performance evaluation of SMEs towards Industry 4.0 using fuzzy group decision making methods. SN
Appl. Sci. 2020, 2, 355. [CrossRef] | |
dc.relation | 43. Calleja, G.; Pastor, R. A dispatching algorithm for flexible job-shop scheduling with transfer batches: An industrial application.
Prod. Plan. Control 2014, 25, 93–109. [CrossRef] | |
dc.relation | 44. Utama, D.M. AHP and TOPSIS Integration for Green Supplier Selection: A Case Study in Indonesia. J. Phys. Conf. Ser. 2021, 1845,
012015. [CrossRef] | |
dc.relation | 45. Ortiz-Barrios, M.; Gul, M.; López-Meza, P.; Yucesan, M.; Navarro-Jiménez, E. Evaluation of hospital disaster preparedness by a multi-criteria decision making approach: The case of Turkish hospitals. Int. J. Disaster Risk Reduct. 2020, 49, 101748. [CrossRef] | |
dc.relation | 46. Wang, Y.; Xu, L.; Solangi, Y.A. Strategic renewable energy resources selection for Pakistan: Based on SWOT-Fuzzy AHP approach.
Sustain. Cities Soc. 2020, 52, 101861. [CrossRef] | |
dc.relation | 47. Pecchia, L.; Martin, J.L.; Ragozzino, A.; Vanzanella, C.; Scognamiglio, A.; Mirarchi, L.; Morgan, S.P. User needs elicitation via analytic hierarchy process (AHP). A case study on a Computed Tomography (CT) scanner. BMC Med. Inform. Decis. Mak. 2013,
13, 1–11. [CrossRef] | |
dc.relation | 48. Liu, Y.; Eckert, C.M.; Earl, C. A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Syst. Appl.
2020, 161, 113738. [CrossRef] | |
dc.relation | 49. Hwang, C.L.; Yoon, K.P. Multiple Attributes Decision Making Methods and Applications; Springer: Berlin, Germany, 1981. | |
dc.relation | 50. Krohling, R.A.; Pacheco, A.G.C. A-TOPSIS—An approach based on TOPSIS for ranking evolutionary algorithms. Pap. Presented
Procedia Comput. Sci. 2015, 55, 308–317. [CrossRef] | |
dc.relation | 51. Ezhilarasan, N.; Vijayalakshmi, C. Optimization of fuzzy programming with TOPSIS algorithm. Pap. Presented Procedia Comput.
Sci. 2020, 172, 473–479. [CrossRef] | |
dc.relation | 52. Ortíz, M.A.; Betancourt, L.E.; Negrete, K.P.; De Felice, F.; Petrillo, A. Dispatching algorithm for production programming of
flexible job-shop systems in the smart factory industry. Ann. Oper. Res. 2018, 264, 409–433. [CrossRef] | |
dc.relation | 53. Liu, H.; Wang, L.; Li, Z.; Hu, Y. Improving risk evaluation in FMEA with cloud model and hierarchical TOPSIS method. IEEE
Trans. Fuzzy Syst. 2019, 27, 84–95. [CrossRef] | |
dc.relation | 54. Jiménez-Delgado, G.; Santos, G.; Félix, M.J.; Teixeira, P.; Sá, J.C. A combined ahp-topsis approach for evaluating the process of
innovation and integration of management systems in the logistic sector. In HCI International 2020–Late Breaking Papers: Interaction,
Knowledge and Social Media; Springer: Cham, Switzerland, 2020. [CrossRef] | |
dc.relation | 55. Bid, S.; Siddique, G. Human risk assessment of panchet dam in India using TOPSIS and WASPAS multi-criteria decision-making
(MCDM) methods. Heliyon 2019, 5. [CrossRef] [PubMed] | |
dc.relation | 56. Zhang, F.; Mei, Y.; Nguyen, S.; Zhang, M. Collaborative multifidelity-based surrogate models for genetic programming in
dynamic flexible job shop scheduling. IEEE Trans. Cybern. 2021. [CrossRef] | |
dc.relation | 57. Ortíz, M. Theory of constraints and LP modeling as strategic decision tools for productivity increasing in the towel line of a
textile-confection sector company. Prospectiva 2013. [CrossRef] | |
dc.relation | 58. Ortiz, M.; Neira, D.; Jiménez, G.; Hernández, H. Solving flexible job-shop scheduling problem with transfer batches, setup times
and multiple resources in apparel industry. In Proceedings of the International Conference on Swarm Intelligence, Belgrade,
Serbia, 14–20 July 2016. [CrossRef] | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Applied Sciences | |
dc.source | https://www.mdpi.com/2076-3417/11/11/5107 | |
dc.subject | FJSP | |
dc.subject | MCDM | |
dc.subject | Fuzzy | |
dc.subject | AHP | |
dc.subject | TOPSIS | |
dc.subject | Smart manufacturing | |
dc.subject | Apparel industry | |
dc.subject | Optimization | |
dc.subject | Innovation | |
dc.subject | Decision analysis | |
dc.title | A dispatching-fuzzy ahp-topsis model for scheduling flexible job-shop systems in industry 4.0 context | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |