dc.creatorArgumedos De la Ossa, César
dc.creatorRamírez-Giraldo, Andrés Fernando
dc.creatorArroyo Alvis, Katy Estela
dc.creatorMarrugo-Negrete, José
dc.creatorDíez, Sergi
dc.date2023-02-28T16:46:55Z
dc.date2025
dc.date2023-02-28T16:46:55Z
dc.date2023
dc.date.accessioned2023-10-03T19:58:59Z
dc.date.available2023-10-03T19:58:59Z
dc.identifierCésar Argumedos De la Ossa, Andrés Fernando Ramírez-Giraldo, Katy Arroyo-Alvis, José Marrugo-Negrete, Sergi Díez, Neuropsychological effects and cognitive deficits associated with exposure to mercury and arsenic in children and adolescents of the Mojana region, Colombia, Environmental Research, Volume 216, Part 3, 2023, 114467, ISSN 0013-9351, https://doi.org/10.1016/j.envres.2022.114467.
dc.identifier0013-9351
dc.identifierhttps://hdl.handle.net/11323/9931
dc.identifier10.1016/j.envres.2022.114467
dc.identifier1096-0953
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173557
dc.descriptionThe present study aims to explore the neuropsychological performance and exposure to mercury (Hg) and arsenic (As) in Colombian children and adolescents considering biomarkers in hair and blood. The total sample consisted of 70 participants from the Mojana region, Colombia. A neuropsychological evaluation protocol was used, consisting of 11 internationally recognized tests, with evidence of national validation and use for measurement in neurotoxicology contexts. A 57.1% of the sample presented levels above the reference value according to the USEPA, the WHO, and the ATSDR for total mercury in hair (HgH), blood mercury (HgB), and/or blood arsenic (AsB). The mean values reported for HgH were 1.76 ± 3.1 μg/g (95% CI 1.02–2.50) with ranges between 0.23 and 17.20; for HgB: 4.11 ± 5.93 μg/l (CI 2.69–5.52), ranging between 0.25 and 25.80, and for AsB: 1.96 ± 2.73 (CI 1.31–2.61) ranging between 0.50 and 15.50. In the comparison of groups in relation to the level of exposure, a significant difference was found (p < 0.05) for the subtest The Boston Naming Test (BNT). Correlation analyses found, on the one hand, significant negative relationships in tests integrated within the verbal (CVB) and executive function (EF) components as well as evidence of positive relationships in the manifestation of errors in their performance with the levels of Hg and/or As transformed by biomarker (Log10). In the linear regression analyses it was found that for each increase in the concentration of HgH, HgB, and AsB it is estimated that, both for the models with and without data adjustment, there is a loss of scores in integrated measures within the CVB and EF for the transformed levels of HgH, HgB, and AsB; and an increase in the reported errors in their processing within these functions. According to these results, exposure to mercury and/or arsenic is related with performance in verbal neuropsychological skills and executive functioning.
dc.format13 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherAcademic Press Inc.
dc.publisherUnited States
dc.relationEnvironmental Research
dc.relationAguilera, D.M., 2004. La Mojana: riqueza natural y potential economico. ´ Documentos de trabajo sobre economía regional N◦ 48. Banco de la República: centros de estudios economicos, ´ regional es (creer). Cartagena. Recuperado de. http://www.planesmojana.com/download/DTSER-48.pdf.
dc.relationAlonso, D.L., Latorre, S., Castillo, E., Brandao, ˜ P.F., 2014. Environmental occurrence of arsenic in Colombia: a review. Environ. Pollut. 186, 272–281. https://doi.org/10.1016/j.envpol.2013.12.009.
dc.relationAlonso, D.L., P´erez, R., Okio, C.K., Castillo, E., 2020. Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurban ´ paramo, Colombia. J. Environ. Manag. 264, 110478 https://doi.org/10.1016/j.jenvman.2020.110478.
dc.relationAlvarez, S., Jessick, A.M., Palacio, J.A., Kolok, A.S., 2012. Methylmercury concentrations in six fish species from two Colombian rivers (2012). Bull. Environ. Contam. Toxicol. 88, 65–68. https://doi.org/10.1007/s00128-011-0458-x.
dc.relationAmerican Public Health Association (APHA), 1998. Standard Methods - 3114 Metals by Hydride Generation Atomic Absorption Spectrometry. APHA, Washington D.C.
dc.relationAntunes dos Santos, A., Appel Hort, M., Culbreth, M., Lopez-Granero, ´ C., Farina, M., Rocha, J.B., Aschner, M., 2016. Methylmercury and brain development: a review of recent literature. J. Trace Elem. Med. Biol. 38, 99–107. https://doi.org/10.1016/j.jtemb.2016.03.001.
dc.relationArcega-Cabrera, F., Fargher, L.F., Oceguera-Vargas, I., Norena-Barroso, ˜ E., Yanez- ´ Estrada, L., Alvarado, J., Gonzalez, ´ L., Moo-Puc, R., P´erez-Herrera, N., QuesadasRojas, M., P´erez-Medina, S., 2017. Water consumption as source of arsenic, chromium, and mercury in children living in rural yucatan, Mexico: blood and urine levels. Bull. Environ. Contam. Toxicol. 99 (4), 452–459. https://doi.org/10.1007/ s00128-017-2147-x.
dc.relationAshe, K., 2012. Elevated mercury concentrations in humans of madre de Dios, Peru. PLoS One 7 (3), e33305. https://doi.org/10.1371/journal.pone.0033305.
dc.relationATSDR- Agency for Toxic Substances and Disease Registry-, 2007a. Toxicological Profile for Arsenic (Update). U.S. Department of Health and Human Services, Atlanta, GA. Public Health Service. https://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=19&tid=3#top.
dc.relationATSDR- Agency for Toxic Substances and Disease Registry-, 2007b. ToxGuideTM for Arsenic: Toxicokinetics and Normal Human Levels. Recuperado de. https://www.atsdr.cdc.gov/toxguides/toxguide-2.pdf.
dc.relationAxelrad, D.A., Bellinger, D.C., Ryan, L.M., Woodruff, T.J., 2007. Dose-response relationship of prenatal mercury exposure and IQ: an integrative analysis of epidemiologic data. Environ. Health Perspect. 115 (4), 609–615. https://doi.org/10.1289/ehp.9303.
dc.relationBarreto, F.B., Sanchez de Miguel, M., Ibarluzea, J., Andiarena, A., Arranz, E., 2017. Family context and cognitive development in early childhood: a longitudinal study. Intelligence 65, 11–22. https://doi.org/10.1016/j.intell.2017.09.006.
dc.relationBellinger, D.C., O’Leary, K., Rainis, H., Gibb, H.J., 2016. Country-specific estimates of the incidence of intellectual disability associated with prenatal exposure to methylmercury. Environ. Res. 147, 159–163. https://doi.org/10.1016/J.ENVRES.2015.10.006.
dc.relationBenton, A.L., 1974. Revised Visual Retention Test: Clinical and Experimental Applications, fourth ed. Psychological Corporation, New York.
dc.relationBenton, A.L., Sivan, A.B., Hamsher, K.deS., Varney, N.R., Spreen, O., 1983. Benton Visual Form Discrimination Test. Contributions to Neuropsychological Assessment: A Clinical Manual. Oxford University Press, New York.
dc.relationBoucher, O., Bastien, C.H., Saint-Amour, D., Dewailly, E., ´ Ayotte, P., Jacobson, J.L., Muckle, G., 2010. Prenatal exposure to methylmercury and PCBs affects distinct stages of information processing: an event-related potential study with Inuit children. Neurotoxicology 31 (4), 373–384. https://doi.org/10.1016/J.NEURO.2010.04.005.
dc.relationBowie, C.R., Harvey, P.D., 2006. Administration and interpretation of the trail making test. Nat. Protoc. 1 (5), 2277–2281. https://doi.org/10.1038/nprot.2006.390.
dc.relationBuelvas-Soto, J., Marrugo-Madrid, S., Marrugo-Negrete, J., 2022. Bioacumulacion ´ de mercurio y plomo en el pato Dendrocygna autumnalis en la subregion ´ de la Mojana, Colombia. Rev. MVZ Cordoba ´ 27 (1). https://doi.org/10.21897/rmvz.2337, 2022.
dc.relationCalao, C.R., Marrugo, J.L., 2015. Efectos genotoxicos ´ asociados a metales pesados en una poblacion ´ humana de la region ´ de La Mojana, Colombia, 2013. Biomedica 35 (Suppl. 2), 139–151. https://doi.org/10.7705/biomedica.v35i0.2392.
dc.relationChakraborti, D., Rahman, M.M., Das, B., Murrill, M., Dey, S., Chandra-Mukherjee, S., et al., 2010. Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Res. 44 (19), 5789–5802. https://doi.org/10.1016/J.WATRES.2010.06.051.
dc.relationClarkson, T.W., Magos, L., 2006. The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicolology 36 (8), 609–662. https://doi.org/10.1080/10408440600845619.
dc.relationCordier, S., Garel, M., Mandereau, L., Morcel, H., Doineau, P., Gosme-Seguret, S., et al., 2002. Neurodevelopmental investigations among methylmercury-exposed children in French guiana. Environ. Res. 89 (1), 1–11. https://doi.org/10.1006/enrs.2002.4349.
dc.relationCounter, S.A., Buchanan, L.H., Ortega, F., 2006. Neurocognitive screening of mercury exposed children of Andean gold miners. Int. J. Occup. Environ. Health 12 (3), 209–214. https://doi.org/10.1179/oeh.2006.12.3.209.
dc.relationCruz-Esquivel, A., ´ Marrugo-Negrete, J., Calao-Ramos, C., 2019. Genetic damage in human populations at mining sites in the upper basin of the San Jorge River, Colombia. Environ. Sci. Pollut. Res. Int. 26 (11), 10961–10971. https://doi.org/10.1007/s11356-019-04527-1.
dc.relationDANE (Departamento de Administracion Nacional de Estadistica, 2005. Estratificacion ´ Socioeconomica para Servicios Publicos Domiciliarios. https://www.dane.gov.co/index.php/transparencia/116-espanol/informacion-georreferenciada/2420-estratificacion-socioeconomica-normatividad.
dc.relationDavidson, P.W., Cory-Slechta, D.A., Thurston, S.W., Huang, L.S., Shamlaye, C.F., Gunzler, D., et al., 2011. Fish consumption and prenatal methylmercury exposure: cognitive and behavioral outcomes in the main cohort at 17 years from the Seychelles child development study. Neurotoxicology 32, 711–717. https://doi.org/10.1016/j.neuro.2011.08.003.
dc.relationDebes, F., Budtz-Jørgensen, E., Weihe, P., White, R.F., Grandjean, P., 2006. Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol. Teratol. 28 (3), 363–375. https://doi.org/10.1016/j.ntt.2006.02.004.
dc.relationDebes, F., Weihe, P., Grandjean, P., 2016. Cognitive deficits at age 22 years associated with prenatal exposure to methylmercury. Cortex 74, 358–369. https://doi.org/10.1016/J.CORTEX.2015.05.017.
dc.relationDeroma, L., Parpinel, M., Tognin, V., Channoufi, L., Tratnik, J., Horvat, M., Barbone, F., 2013. Neuropsychological assessment at school-age and prenatal low-level exposure to mercury through fish consumption in an Italian birth cohort living near a contaminated site. Int. J. Hyg Environ. Health 216 (4), 486–493. https://doi.org/10.1016/j.ijheh.2013.02.004.
dc.relationDesai, U., Yarra, C., Ghosh, D.C., 2018. Concatenative Articulatory Video Synthesis Using Real-Time MRI Data for Spoken Language Training, 2018. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, pp. 4999–5003, 2018.
dc.relationDesai, G., Barg, G., Vahter, M., Queirolo, E.I., Peregalli, F., Manay, ˜ N., Millen, A.E., Yu, J., Kordas, K., 2020. Executive functions in school children from Montevideo, Uruguay and their associations with concurrent low-level arsenic exposure. Environ. Int. 142, 105883 https://doi.org/10.1016/j.envint.2020.105883.
dc.relationDíaz, S.M., Munoz-Guerrero, ˜ M.N., Palma-Parra, M., Becerra-Arias, C., Fernandez- ´ Nino, ˜ J.A., 2018. Exposure to mercury in Workers and the population surrounding gold mining areas in the Mojana region, Colombia. Int. J. Environ. Res. Publ. Health 15 (11), 2337. https://doi.org/10.3390/ijerph15112337.
dc.relationDriscoll, C.T., Mason, R.P., Chan, H.M., Jacob, D.J., Pirrone, N., 2013. Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47 (10), 4967–4983. https://doi.org/10.1021/es305071v.
dc.relationDzwilewski, K.L.C., Schantz, S.L., 2015. Prenatal chemical exposures and child language development. J. Commun. Disord. 57, 41–65. https://doi.org/10.1016/J.JCOMDIS.2015.07.002.
dc.relationEnamorado-Montes, G., Reino-Causil, B., Urango-Cardenas, I., Marrugo-Madrid, S., Marrugo-Negrete, J., 2021. Mercury accumulation in commercial varieties of oryza sativa L. cultivated in soils of La Mojana region, Colombia. Toxics 9 (11), 304. https://doi.org/10.3390/toxics9110304.
dc.relationEthier, A.A., Muckle, G., Jacobson, S.W., Ayotte, P., Jacobson, J.L., Saint-Amour, D., 2015. Assessing new dimensions of attentional functions in children prenatally exposed to environmental contaminants using an adapted Posner paradigm. Neurotoxicol. Teratol. 51, 27–34. https://doi.org/10.1016/j.ntt.2015.07.005.
dc.relationFAO, 2002. El estado mundial de la agricultura y la alimentacion ´ 2002. FAO, Roma.
dc.relationForns, J., Fort, M., Casas, M., Caceres, A., Guxens, M., Gascon, M., et al., 2014. Exposure to metals during pregnancy and neuropsychological development at the age of 4 years. Neurotoxicology 40, 16–22. https://doi.org/10.1016/J.NEURO.2013.10.006.
dc.relationFreire, C., Ramos, R., Lopez-Espinosa, M.-J., Díez, S., Vioque, J., Ballester, F., Fernandez, M.-F., 2010. Hair mercury levels, fish consumption, and cognitive development in preschool children from Granada, Spain. Environ. Res. 110 (1), 96–104. https://doi.org/10.1016/J.ENVRES.2009.10.005.
dc.relationFreire, C., Amaya, E., Gil, F., Fernandez, ´ M.F., Murcia, M., Llop, S., Olea, N., 2018. Prenatal co-exposure to neurotoxic metals and neurodevelopment in preschool children: the environment and childhood (INMA) project. Sci. Total Environ. 621, 340–351. https://doi.org/10.1016/j.scitotenv.2017.11.273.
dc.relationGaleano-Paez, ´ C., Espitia-P´erez, P., Jimenez-Vidal, L., Pastor-Sierra, K., SalcedoArteaga, S., Hoyos-Giraldo, L.S., et al., 2021. Dietary exposure to mercury and its relation to cytogenetic instability in populations from “La Mojana” region, northern Colombia. Chemosphere 265, 129066. https://doi.org/10.1016/j.chemosphere.2020.129066.
dc.relationGolding, J., Rai, D., Gregory, S., Ellis, G., Emond, A., Iles-Caven, Y., Taylor, C., 2018. Prenatal mercury exposure and features of autism: a prospective population study. Mol. Autism. 9, 30. https://doi.org/10.1186/s13229-018-0215-7.
dc.relationGracia, L., Marrugo, J.L., Alvis, E.M., 2010. Contaminacion ´ por mercurio en humanos y peces en el municipio de Ayapel, Cordoba, ´ Colombia, 2009. Rev. Fac. Nac. Salud Pública 28 (2), 118–124.
dc.relationGrandjean, P., Landrigan, P.J., 2014. Neurobehavioural effects of developmental toxicity. The Lancet. Neurology 13 (3), 330–338. https://doi.org/10.1016/S1474-4422(13)70278-3.
dc.relationGustin, K., Tofail, F., Mehrin, F., Levi, M., Vahter, M., Kippler, M., 2017. Methylmercury exposure and cognitive abilities and behavior at 10 years of age. Environ. Int. 102, 97–105. https://doi.org/10.1016/J.ENVINT.2017.02.004.
dc.relationGuti´errez-Mosquera, H., Sujitha, S.B., Jonathan, M.P., Sarkar, S.K., Medina-Mosquera, F., Ayala-Mosquera, H., et al., 2018. Mercury levels in human population from a mining district in Western Colombia. J. Environ. Sci. 68, 83–90. https://doi.org/10.1016/j.jes.2017.12.007.
dc.relationGuti´errez-Mosquera, H., Marrugo-Negrete, J., Díez, S., Morales-Mira, G., MontoyaJaramillo, L.J., Jonathan, M.P., 2021. Mercury distribution in different environmental matrices in aquatic systems of abandoned gold mines, Western Colombia: focus on human health. J. Hazard Mater. 404, 124080 https://doi.org/10.1016/j.jhazmat.2020.124080.
dc.relationHackman, D.A., Farah, M.J., Meaney, M.J., 2010. Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat. Rev. Neurosci. 11 (9), 651–659. https://doi.org/10.1038/nrn2897.
dc.relationHall, J., O’Carroll, R.E., Frith, C.D., 2010. Neuropsychology. In: Johnstone, E.C., Lawrie, S.M., Sharpe, M., Owens, D.C., McIntosh, A.M. (Eds.), Companion to Psychiatric Studies. Churchill Livingstone, pp. 121–140. https://doi.org/10.1016/B978-0-7020-3137-3.00007-3.
dc.relationHamadani, J., Tofail, F., Nermell, B., Gardner, R., Shiraji, S., Bottai, M., et al., 2011. Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: a population-based cohort study. Int. J. Epidemiol. 40 (6), 1593–1604. https://doi.org/10.1093/ije/dyr176.
dc.relationHan, D.Y., Hoelzle, J.B., Dennis, B.C., Hoffmann, M., 2011. A brief review of cognitive assessment in neurotoxicology. Neurol. Clin. 29 (3), 581–590. https://doi.org/10.1016/j.ncl.2011.05.008.
dc.relationHessabi, M., Rahbar, M.H., Dobrescu, I., Bach, M.A., Kobylinska, L., Bressler, J., Grove, M.L., Loveland, K.A., Mihailescu, I., Nedelcu, M.C., Moisescu, M.G., Matei, B. M., Matei, C.O., Rad, F., 2019. Concentrations of lead, mercury, arsenic, cadmium, manganese, and aluminum in blood of Romanian children suspected of having autism spectrum disorder. Int. J. Environ. Res. Publ. Health 16 (13), 2303. https://doi.org/10.3390/ijerph16132303.
dc.relationHoelzle, J., 2008. Neuropsychological Assessment and the Cattell-Horn-Carroll (CHC) Cognitive Abilities Model. (Electronic Thesis or Dissertation). https://etd.ohiolink. edu/apexprod/rws_olink/r/1501/10?clear=10&p10_accession_num=toledo1216405861.
dc.relationHsi, H.C., Jiang, C.B., Yang, T.H., Chien, L.C., 2014. The neurological effects of prenatal and postnatal mercury/methylmercury exposure on three-year-old children in Taiwan. Chemosphere 100, 71–76. https://doi.org/10.1016/J.CHEMOSPHERE.2013.12.068.
dc.relationIARC (International Agency for Research on Cancer), 2012. Arsenic, Metals, Fibres and Dusts, vol. 100. IARC Monogr Eval Carcinog Risks Hum. V100-C. http://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C.pdf.
dc.relationIBM Corp, 2017. IBM SPSS Statistics for Windows, Version 25.0. 2017. IBM Corp, Armonk, NY.
dc.relationINS-Instituto Nacional de Salud, 2016. Vigilancia y analisis del riesgo en salud pública: protocolo de vigilancia en salud publica intoxicaciones por sustancias quimicas. Recuperado de. https://www.clinicamedihelp.com/documentos/protocolos/PRO% 20Intoxicaciones.pdf.
dc.relationJacobson, J.L., Muckle, G., Ayotte, P., Dewailly, E., ´ Jacobson, S.W., 2015. Relation of prenatal methylmercury exposure from environmental sources to childhood IQ. Environ. Health Perspect. 123 (8), 827–833. https://doi.org/10.1289/ehp.1408554.
dc.relationJeong, K.S., Park, H., Ha, E., Shin, J., Hong, Y.C., Ha, M., Kim, Y., 2017. High maternal blood mercury level is associated with low verbal IQ in children. J. Kor. Med. Sci. 32 (7), 1097. https://doi.org/10.3346/jkms.2017.32.7.109.
dc.relationJomova, K., Valko, M., 2011. Advances in metal-induced oxidative stress and human disease. Toxicology 283 (2–3), 65–87. https://doi.org/10.1016/J.TOX.2011.03.001.
dc.relationKicinski, M., Vrijens, J., Vermier, G., Hond, E. Den, Schoeters, G., Nelen, V., Nawrot, T.S., 2015. 3-Neurobehavioral function and low-level metal exposure in adolescents. Int. J. Hyg Environ. Health 218 (1), 139–146. https://doi.org/10.1016/J.IJHEH.2014.09.002.
dc.relationKim, Y., Ha, E.-., Park, H., Ha, M., Kim, Y., Hong, Y.-., Kim, B.-., 2018. Prenatal mercury exposure, fish intake and neurocognitive development during first three years of life: prospective cohort mothers and children’s environmental health (MOCEH) study. Sci. Total Environ. 615, 1192–1198. https://doi.org/10.1016/j.scitotenv.2017.10.014.
dc.relationKordas, K., Ardoino, G., Coffman, D.L., Queirolo, E.I., Ciccariello, D., Manay, ˜ N., Ettinger, A.S., 2015. Patterns of exposure to multiple metals and associations with neurodevelopment of preschool children from montevideo, Uruguay. Journal of Environmental and Public Health 9. https://doi.org/10.1155/2015/493471. ID 493471.
dc.relationLarrabee, G.J., 2000. Specialized neuropsychological assessment methods. In: Handbook of Psychological Assessment. Elsevier science, Oxford, pp. 301–335. https://doi.org/10.1016/B978-008043645-6/50090-2.
dc.relationLee, N.R., Wallace, G.L., Raznahan, A., Clasen, L.S., Giedd, J.N.(, 2014. Trail making test performance in youth varies a function of anatomical coupling between the prefrontal cortex and distributed cortical region. Front. Psychol. 68, 627–630. https://doi.org/10.3389/fpsyg.2014.00496.
dc.relationLee, H., Park, H., Ha, E., Hong, Y.-., Ha, M., Park, H., Kim, Y., 2017. Stability of cognitive development during the first five years of life in relation to heavy metal concentrations in umbilical cord blood: Mothers’ and children’s environmental health (MOCEH) birth cohort study. Sci. Total Environ. 609, 153–159. https://doi.org/10.1016/j.scitotenv.2017.07.074.
dc.relationLezak, M.D., Howieson, D.B., Loring, D.W., Hannay, H.J., Fischer, J.S., 2004. Neuropsychological Assessment. Oxford University Press.
dc.relationLi, H., Li, H., Li, Y., Liu, Y., Zhao, Z., 2017. Blood mercury, arsenic, cadmium, and lead in children with autism spectrum disorder. Biol. Trace Elem. Res. 181 (1), 31–37. https://doi.org/10.1007/s12011-017-1002-6.
dc.relationLlop, S., Ballester, F., Murcia, M., Forns, J., Tardon, A., Andiarena, A., et al., 2017. Prenatal exposure to mercury and neuropsychological development in young children: the role of fish consumption. Int. J. Epidemiol. 46 (3), 827–838. https://doi.org/10.1093/ije/dyw259.
dc.relationLockwood, C.A., Mansoor, Y., Homer-Smith, E., Moses, J.A., 2011. Factor structure of the Benton visual retention tests: dimensionalization of the Benton visual retention test, Benton visual retention test–multiple choice, and the visual form discrimination test. Clin. Neuropsychol. 25 (1), 90–107. https://doi.org/10.1080/13854046.2010.531053.
dc.relationLucchini, R.G., Guazzetti, S., Renzetti, S., Conversano, M., Cagna, G., Fedrighi, C., et al., 2019. Neurocognitive impact of metal exposure and social stressors among schoolchildren in Taranto. Italy. Environmental Health 18 (1), 67. https://doi.org/10.1186/s12940-019-0505-3.
dc.relationManjarres-Suarez, A., Olivero-Verbel, J., 2020. Hematological parameters and hair mercury levels in adolescents from the Colombian Caribbean. Environ. Sci. Pollut. Control Ser. 27, 14216–14227. https://doi.org/10.1007/s11356-020-07738-z.
dc.relationManju, R., Hegde, A.M., Parlees, P., Keshan, A., 2017. Environmental arsenic contamination and its effect on intelligence quotient of school children in a historic gold mining area hutti, north Karnataka, India: a pilot study. J. Neurosci. Rural Pract. 8 (3), 364–367. https://doi.org/10.4103/jnrp.jnrp_501_16.
dc.relationMarques, R.C., Bernardi, J.V.E., Dorea, ´ J.G., Leao, ˜ R.S., Malm, O., 2013. Mercury transfer during pregnancy and breastfeeding: hair mercury concentrations as biomarker. Biol. Trace Elem. Res. 154 (3), 326–332. https://doi.org/10.1007/s12011-013-9743.
dc.relationMarrugo Negrete, J., Pinedo-Hern´andez, J., Paternina–Uribe, R., Quiroz-Aguas, L., Pacheco-Florez, S., 2018. Distribucion ´ espacial y evaluacion ´ de la contaminacion ´ ambiental por mercurio en la region ´ de la Mojana, Colombia. Revista MVZ Cordoba, ´ pp. 7062–7075. https://doi.org/10.21897/rmvz.1481.
dc.relationMartínez-Reina, A.M., 2013. Caracterizacion ´ socioeconomica ´ de los sistemas de produccion ´ de la region ´ de La Mojana en el Caribe de Colombia. Ciencia y Tecnología Agropecuaria 14 (2), 165–185. http://www.scielo.org.co/pdf/ccta/v14 n2/v14n2a05.pdf.
dc.relationMinistry of Health and Social Protection, 1993. Resolution 8430 of 1993. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/RESOLUCION-8430-DE-1993.PDF.
dc.relationMinistry of Health Colombia, 2015. Basic Nucleus of Sociodemographic Variables. Department of Epidemiology and Demography. National System of Population Studies and Surveys for Health. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/GCFI/Nucleo-basico-variables-sistema-encuestas.pdf.
dc.relationMitrushina, M.N., Boone, K.B., Razani, J., D’Elia, L.F., 2005. Handbook of Normative Data for Neuropsychological Assessment. Oxford University Press, New York, pp. 241–277. https://www.oxford.co.za/book/9780195169300-handbook-of-normative-data-for-neuropsychological-assessment#.W7KKb3szbIV.
dc.relationMoran, L., Yeates, K.O., 2011. Stroop color and word test, children’s version. In: Encyclopedia of Clinical Neuropsychology. Springer New York, New York, NY, pp. 2403–2404. https://doi.org/10.1007/978-0-387-79948-3_1597.
dc.relationMorinson, M.L.V., Coronado, J.A.C., Hernandez, ´ E.A.L., 2014. Analisis Multivariado de la Calidad educativa en Sucre. Sci. Tech. 19 (1), 96–105. https://revistas.utp.edu.co/index.php/revistaciencia/article/view/8953/5719.
dc.relationNahar, M.N., Inaoka, T., Fujimura, M., Watanabe, C., Shimizu, H., Tasmin, S., et al., 2014. Arsenic contamination in groundwater and its effects on adolescent intelligence and social competence in Bangladesh with special reference to daily drinking/cooking water intake. Environ. Health Prev. Med. 19 (2), 151–158. https://doi.org/10.1007/s12199-013-0369-z.
dc.relationNichols, E.S., Wild, C.J., Owen, A.M., Soddu, A., 2021. Cognition across the lifespan: investigating age, sex, and other sociodemographic influences. Behav. Sci. 11 (4), 51. https://doi.org/10.3390/bs11040051.
dc.relationNúnez, S.E.R., Negrete, J.L.M., Rios, J.E.A., et al., 2011. Accumulation in macrophytes growing in tropical wetlands. Hg, Cu, Pb, Cd, and Zn Water Air Soil Pollut. 216, 361–373. https://doi.org/10.1007/s11270-010-0538-2.
dc.relationOhlander, J., Huber, S.M., Schomaker, M., Heumann, C., Schierl, R., Michalke, B., et al., 2016. Mercury and neuromotor function among children in a rural town in Chile. Int. J. Occup. Environ. Health 22 (1), 27–35.
dc.relationOlabarrieta-Landa, L., Rivera, D., Galarza, L., Garza, M.T., Saracho, C.P., Rodríguez, W., et al., 2015. Verbal fluency tests: normative data for the Latin American Spanish speaking adult population. NeuroRehabilitation 37 (4), 515–561. https://doi.org/10.3233/NRE-151279.
dc.relationOsterrieth, P.A., 1944. Le test de copie d’une figure complexe; contribution a ` l’´etude de la perception et de la m´emoire [Test of copying a complex figure; contribution to the study of perception and memory]. Arch. Psychol. 30, 206–356. http://psycnet.apa. org/record/1946-02126-001.
dc.relationOstrosky-Solís, F., Guti´errez, A.L., 2012. Factores socioculturales en la valoracion ´ neuropsicologica. ´ Revista Argentina de Ciencias del comportamiento 4 (2), 43–50. https://www.redalyc.org/pdf/3334/333427357006.pdf.
dc.relationO’Bryant, S.E., Edwards, M., Menon, C.V., Gong, G., Barber, R., 2011. Long-term lowlevel arsenic exposure is associated with poorer neuropsychological functioning: a Project FRONTIER study. Int. J. Environ. Res. Publ. Health 8 (3), 861–874. https:// doi.org/10.3390/ijerph8030861.
dc.relationPalma-Parra, M., Munoz-Guerrero, ˜ M.N., Pacheco-Garcia, O., Ortiz-Gomez, Y., Díaz-C, S. M., 2019. Ninos ˜ y adolescentes expuestos ambientalmente a mercurio, en diferentes municipios de Colombia. Revista de la Universidad Industrial de Santander. Salud 52 (1), 43–52. https://doi.org/10.18273/revsal.v51n1-2019005.
dc.relationPark, J.D., Zheng, W., 2012. Human exposure and health effects of inorganic and elemental mercury. J. Prevent. Med. Publ. Health 45 (6), 344–352. https://doi.org/10.3961/jpmph.2012.45.6.344.
dc.relationParvez, F., Wasserman, G.A., Factor-Litvak, P., Liu, X., Slavkovich, V., Siddique, A.B., et al., 2011. Arsenic exposure and motor function among children in Bangladesh. Environ. Health Perspect. 119 (11), 1665–1670. https://doi.org/10.1289/ehp.1103548.
dc.relationPedraza, M.L., y Espinosa-Ramírez, A.J., 2022. El legado del ars´enico y mercurio en el Complejo Cenagoso Ramsar de Ayapel, (Cordoba, ´ Colombia): aproximacion ´ a la macrocuenca Magdalena-Cauca. Acta Biol. Colomb. 27 (2), 164–176. https://doi.org/10.15446/abc.v27n2.89084.
dc.relationPino, A., Bocca, B., Forte, G., Majorani, C., Petrucci, F., Senofonte, O., Alimonti, A., 2018. Determination of mercury in hair of children. Toxicol. Lett. 298 (12), 25–32. https://doi.org/10.1016/j.toxlet.2018.06.1215.
dc.relationPirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R., Leaner, J., et al., 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. Atmospheric Chemistry and Physics 10, 5951–5964. https://doi.org/10.5194/acp-10-5951-2010.
dc.relationPolanska, ´ K., Jurewicz, J., Hanke, W., 2013. Review of current evidence on the impact of pesticides, polychlorinated biphenyls and selected metals on attention deficit/hyperactivity disorder in children. Int. J. Occup. Med. Environ. Health 26 (1), 16–38. https://doi.org/10.2478/s13382-013-0073-7.
dc.relationQualls, C.E., Bliwise, N.G., Stringer, A.Y., 2000. Short forms of the Benton judgment of line orientation test: development and psychometric properties. Arch. Clin. Neuropsychol. 15 (2), 159–163. https://doi.org/10.1016/S0887-6177(98)00043-2.
dc.relationRegan, K., Evers, D.C., Turnquist, M.A., Sam ˇ anek, ´ J., Buck, D.G., Trasande, L., et al., 2016. Economic implications of mercury exposure in the context of the global mercury treaty: hair mercury levels and estimated lost economic productivity in selected developing countries. J. Environ. Manag. 183, 229–235. https://doi.org/10.1016/j.jenvman.2016.08.058.
dc.relationReuben, A., Frischtak, H., Berky, A., Ortiz, E.J., Morales, A.M., Hsu-Kim, H., et al., 2020. Elevated hair mercury levels are associated with neurodevelopmental deficits in children living near artisanal and small-scale gold mining in Peru. GeoHealth 4 (5), e2019GH000222. https://doi.org/10.1029/2019GH000222.
dc.relationRey, A., 1941. L’examen psychologique dans les cas d’enc´ephalopathie traumatique. (Les problems.). [The psychological examination in cases of traumatic encepholopathy. Problems.]. Arch. Psychol. 28 (1), 215–285. http://psycnet.apa.org/record/1943-03814-001.
dc.relationRey, A., 2003. Test de Copia y Reproduccion ´ de Memoria de Figuras Complejas (8a Edicion). ´ Madrid: TEA Ediciones, S.A.
dc.relationRice, K.M., Walker, E.M., Wu, M., Gillette, C., Blough, E.R., 2014. Environmental mercury and its toxic effects. J. Prevent. Med. Publ. Health 47 (2), 74–83. https://doi.org/10.3961/jpmph.2014.47.2.74.
dc.relationRodríguez, E.G., Bellinger, D.C., Valeri, L., Hasan, M.O.S.I., Quamruzzaman, Q., Golam, M., et al., 2016. Neurodevelopmental outcomes among 2- to 3-year-old children in Bangladesh with elevated blood lead and exposure to arsenic and manganese in drinking water. Environ. Health 15 (1), 44. https://doi.org/10.1186/s12940-016-0127-y.
dc.relationRosado, J.L., Ronquillo, D., Kordas, K., Rojas, O., Alatorre, J., Lopez, ´ P., et al., 2007. Arsenic exposure and cognitive performance in mexican schoolchildren. Environ. Health Perspect. 115 (9), 1371–1375. https://doi.org/10.1289/ehp.9961.
dc.relationSalazar-Camacho, C., Salas-Moreno, M., Marrugo-Madrid, S., Marrugo-Negrete, J., Díez, S., 2017. Dietary human exposure to mercury in two artisanal small-scale gold mining communities of northwestern Colombia. Environ. Int. 107 (May), 47–54. https://doi.org/10.1016/j.envint.2017.06.011.
dc.relationSantos-Lima, C.D., Mour˜ao, D.D.S., Carvalho, C.F.D., Souza-Marques, B., Vega, C.M., Gonçalves, R.A., Argollo, N., Menezes-Filho, J.A., Abreu, N., Hacon, S.D.S., 2020. Neuropsychological effects of mercury exposure in children and adolescents of the amazon region. Brazil. NeuroToxicology 79, 48–57. https://doi.org/10.1016/j.neuro.2020.04.00.
dc.relationSchneider, W.J., McGrew, K.S., 2018. The Cattell–Horn–Carroll theory of cognitive abilities. In: Flanagan, D.P., McDonough, E.M. (Eds.), Contemporary Intellectual Assessment: Theories, Tests, and Issues. The Guilford Press, pp. 73–163.
dc.relationSchoenberg, M.R., Dawson, K.A., Duff, K., Patton, D., Scott, J.G., Adams, R.L., 2006. Test performance and classification statistics for the Rey Auditory Verbal Learning Test in selected clinical samples. Arch. Clin. Neuropsychol. 21 (7), 693–703. https://doi.org/10.1016/j.acn.2006.06.010.
dc.relationSerrano, C., Allegri, R.F., Drake, M., Butman, J., Harris, P., Nagle, C., Ranalli, C., 2001. [A shortened form of the Spanish Boston naming test: a useful tool for the diagnosis of Alzheimer’s disease]. Rev. Neurol. 33 (7), 624–627. https://doi.org/10.33588/rn.3307.2001238.
dc.relationSharma, B., Singh, S., Siddiqi, N.J., 2014. Biomedical implications of heavy metals induced imbalances in redox systems. BioMed Res. Int. 2014 (1), 640–754. https://doi.org/10.1155/2014/640754.
dc.relationSliwinski, M., Buschke, H., 1999. Cross-sectional and longitudinal relationships among age, cognition, and processing speed. Psychol. Aging 14 (1), 18–33. https://doi.org/10.1037/0882-7974.14.1.18.
dc.relationSmirni, D., Oliveri, M., Turriziani, P., Di Martino, G., Smirni, P., 2018. Benton visual form discrimination test in healthy children: normative data and qualitative analysis. Neurol. Sci. 39 (5), 885–892. https://doi.org/10.1007/s10072-018-3297-2.
dc.relationSnoj Tratnik, J., Falnoga, I., Trdin, A., Mazej, D., Fajon, V., Miklavˇciˇc, A., Horvat, M., 2017. Prenatal mercury exposure, neurodevelopment and apolipoprotein E genetic polymorphism. Environ. Res. 152 (1), 375–385. https://doi.org/10.1016/j.envres.2016.08.035.
dc.relationStemme, A., Deco, G., 2008. Neuronal and cortical dynamical mechanisms underlying brain functions. In: Handbook of Cognitive Science. Elsevier, Oxford, pp. 219–240. https://doi.org/10.1016/B978-0-08-046616-3.00012-8.
dc.relationStroop, J.R., 1935. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18 (6), 643–662. https://doi.org/10.1037/h0054651.
dc.relationSunderland, E.M., Selin, N.E., 2013. Future trends in environmental mercury concentrations: implications for prevention strategies. Environ. Health 12, 2. https://doi.org/10.1186/1476-069X-12-2.
dc.relationSundseth, K., Pacyna, J.M., Pacyna, E.G., Munthe, J., Belhaj, M., Astrom, S., 2010. Economic benefits from decreased mercury emissions: projections for 2020. J. Clean. Prod. 18 (4), 386–394. https://doi.org/10.1016/j.jclepro.2009.10.017.
dc.relationSurkan, P.J., Wypij, D., Trachtenberg, F., Daniel, D.B., Barregard, L., Mckinlay, S., Bellinger, D.C., 2009. Neuropsychological function in school-age children with low mercury exposures. Environ. Res. 109 (6), 728–733. https://doi.org/10.1016/j.envres.2009.04.006.
dc.relationSzkoda, J., Zmudzki, J., Grzebalska, A., 2006. Determination of arsenic in biological material by hydride generation atomic absorption spectrometry method. Bull. Vet. Inst. Pulawy 50 (2), 259–272.
dc.relationTeubner-Rhodes, S., Vaden, K.I., Dubno, J.R., Eckert, M.A., 2017. Cognitive persistence: development and validation of a novel measure from the Wisconsin card sorting test. Neuropsychologia 102 (28), 95–108. https://doi.org/10.1016/j.neuropsychologia.2017.05.027.
dc.relationTirado, V., García, M.A., Moreno, J., Galeano-Toro, L.M., Lopera, F., Franco, A., 2000. Neuropsychological disorders due to occupational exposure to mercury vapor in el bagre (antioquia, columbia). [Alteraciones neuropsicologicas ´ por exposicion ´ occupational a vapores de mercurio en El Bagre (Antioquia, Colombia). Rev. Neurol. 31 (8), 712–716. https://doi.org/10.33588/rn.3108.2000237.
dc.relationTolins, M., Ruchirawat, M., Landrigan, P., 2014. The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure. Annals of Global Health 80 (4), 303–314. https://doi.org/10.1016/j.aogh.2014.09.005.
dc.relationTrites, R.L., 1977. Neuropsychological Test Manual. Instructions for the Grooved Pegboard Test. Royal Ottawa Hospital, Ottawa, Ontario, Canada.
dc.relationTyler, C.R., Allan, A.M., 2014. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr. Environ. Health Reports 1 (2), 132–147. https://doi.org/10.1007/s40572-014-0012-1.
dc.relationUNEP & WHO, 2008. Guidance for Identifying Populations at Risk from Mercury Exposure. Inter-Organization Programme for the Sound Management of Chemicals Geneva, Switzerland. IOMC. http://cort.as/-GAcb.
dc.relationValdelamar-Villegas, J., Olivero-Verbel, J., 2019. High mercury levels in the indigenous population of the yaigoj´e apaporis national natural Park, Colombian amazon. Biol. Trace Elem. Res. 191, 1–10. https://doi.org/10.1007/s12011-019-01760-0.
dc.relationValeri, L., Mazumdar, M.M., Bobb, J.F., Claus Henn, B., Rodrigues, E., Sharif, O., Kile, M. L., Quamruzzaman, Q., Afroz, S., Golam, M., Amarasiriwardena, C., Bellinger, D.C., Christiani, D.C., Coull, B.A., Wright, R.O., 2017. The joint effect of prenatal exposure to metal mixtures on neurodevelopmental outcomes at 20-40 Months of age: evidence from rural Bangladesh. Environ. Health Perspect. 125 (6), 067015 https://doi.org/10.1289/EHP614.
dc.relationValko, M., Morris, H., Cronin, M., 2005. Metals, toxicity and oxidative stress. Curr. Med. Chem. 12 (10), 1161–1208. https://doi.org/10.2174/0929867053764635.
dc.relationvan Wijngaarden, E., Thurston, S.W., Myers, G.J., Harrington, D., Cory-Slechta, D.A., Strain, J.J., Watson, G.E., Zareba, G., Love, T., Henderson, J., Shamlaye, C.F., Davidson, P.W., 2017. Methyl mercury exposure and neurodevelopmental outcomes in the Seychelles Child Development Study Main cohort at age 22 and 24years. Neurotoxicol. Teratol. 59, 35–42. https://doi.org/10.1016/j.ntt.2016.10.011.
dc.relationVargas, M.L., Quiroz, C.M., 2011. Alteraciones neuropsicologicas ´ en escolares de un municipio con niveles elevados de vapor de mercurio medioambiental, Colombia, 2008-2009. Revista Facultad Nacional de Salud Pública 20 (4), 461–468. https://www.redalyc.org/pdf/120/12021522012.pdf.
dc.relationVejrup, K., Brandlistuen, R.E., Brantsæter, A.L., Knutsen, H.K., Caspersen, I.H., Alexander, J., Haugen, M., 2018. Prenatal mercury exposure, maternal seafood consumption and associations with child language at five years. Environ. Int. 110, 71–79. https://doi.org/10.1016/j.envint.2017.10.008.
dc.relationVibol, S., Hashim, J.H., Sarmani, S., 2015. Neurobehavioral effects of arsenic exposure among secondary school children in the Kandal Province, Cambodia. Environ. Res. 137, 329–337. https://doi.org/10.1016/J.ENVRES.2014.12.0.
dc.relationVon Stumm, S., Plomin, R., 2015. Socioeconomic status and the growth of intelligence from infancy through adolescence. Intelligence 48, 30–36. https://doi.org/10.1016/j.intell.2014.10.002.
dc.relationWang, Y., Chen, A., Dietrich, K.N., Radcliffe, J., Caldwell, K.L., Rogan, W.J., 2014. Postnatal exposure to methyl mercury and neuropsychological development in 7- year-old urban inner-city children exposed to lead in the United States. Child Neuropsychol. : J. Normal Abnormal Dev. Childhood Adolescence 20 (5), 527–538. https://doi.org/10.1080/09297049.2013.824955.
dc.relationWasserman, G.A., Liu, X., LoIacono, N.J., Kline, J., Factor-Litvak, P., van Geen, A., et al., 2014. A cross-sectional study of well water arsenic and child IQ in Maine schoolchildren. Environ. Health 13 (1), 23. https://doi.org/10.1186/1476-069X-13- 23.
dc.relationWasserman, G.A., Liu, X., Parvez, F., Factor-Litvak, P., Kline, J., Siddique, A.B., et al., 2016. Child intelligence and reductions in water arsenic and manganese: a two-year follow-up study in Bangladesh. Environ. Health Perspect. 124 (7), 1114–1120. https://doi.org/10.1289/ehp.1509974.
dc.relationXu, Y., Khoury, J.C., Sucharew, H., Dietrich, K., Yolton, K., 2016. Low-level gestational exposure to mercury and maternal fish consumption: associations with neurobehavior in early infancy. Neurotoxicol. Teratol. 54, 61–67. https://doi.org/10.1016/J.NTT.2016.02.002.
dc.relationZakzanis, K.K., Mraz, R., Graham, S.J., 2005. An fMRI study of the trail making test. Neuropsychologia 43 (13), 1878–1886. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2005.03.013.
dc.relation13
dc.relation1
dc.relation216
dc.rights© 2022 The Authors. Published by Elsevier Inc.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S0013935122017947?via%3Dihub
dc.subjectNeuropsychological performance
dc.subjectChildren
dc.subjectAdolescents
dc.subjectMercury
dc.subjectArsenic
dc.subjectBoston naming test
dc.titleNeuropsychological effects and cognitive deficits associated with exposure to mercury and arsenic in children and adolescents of the Mojana region, Colombia
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución