dc.contributor | Sagastume Gutiérrez, Alexis | |
dc.contributor | Mendoza Fandiño, Jorge Mario | |
dc.creator | Rhenals Julio, Jesús David | |
dc.date | 2021-08-12T14:49:17Z | |
dc.date | 2021-08-12T14:49:17Z | |
dc.date | 2021 | |
dc.date.accessioned | 2023-10-03T19:58:35Z | |
dc.date.available | 2023-10-03T19:58:35Z | |
dc.identifier | https://hdl.handle.net/11323/8516 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9173525 | |
dc.description | In this work an energetic and exergetic evaluation of an absorption-diffusion refrigeration system operating with renewable energy sources is performed, the sources evaluated were photovoltaic solar energy, biogas obtained from rumen content, and gasification gas from corn residues, which have a high potential in the department of Cordoba. Initially, an energetic characterization of the studied sources was carried out; for biogas and gasification gas, the thermochemical characteristics of the biomasses and the composition and calorific value of the fuel gas were determined, obtaining lower calorific values of 30 MJ/kg for biogas and 5,18 MJ/kg for gasification gas. In the case of solar energy, using a Gaussian model for hourly radiation, the operating hours of the refrigeration system operating with this source were estimated, obtaining an operating time between 6.5 and 7.56 hours per day. Subsequently, the energy and exergy analysis of the system was carried out, calculating the performance coefficients with each energy source; biogas showed a performance coefficient of 0,18 in energy and 0,2 in exergy, while solar energy had a performance of 0,095 in energy and 0,0065 in exergy, and gasification gas had a performance of 0,06 in energy and 0,022 in exergy. Finally, the economic analysis of the system showed that the source with the lowest operating costs is photovoltaic solar energy, so the use of this source is recommended for cooling in non-interconnected areas of the department. | |
dc.description | En el presente trabajo se realiza una evaluación energética y exergética de un sistema de refrigeración por absorción-difusión funcionando con fuentes de energía renovables, las fuentes evaluadas fueron; energía solar fotovoltaica, biogás obtenido de contenido ruminal y gas de gasificación de residuos del maíz, las cuales tienen un alto potencial en el departamento de Córdoba. Inicialmente se realizó una caracterización energética de las fuentes estudiadas, para el biogás y el gas de gasificación se determinaron las características termoquímicas de las biomasas y la composición y poder calorífico del gas combustible, obteniendo valores de poder calorífico inferior de 30 MJ/kg para el biogás y 5,18 MJ/kg para el gas de gasificación. Para la energía solar por medio de un modelo gaussiano para la radiación horaria se estimaron las horas de funcionamiento del sistema de refrigeración operando con esta fuente, obtenido un tiempo de funcionamiento entre 6,5 y 7,56 horas por día. Posteriormente se realizó el análisis energético y exergético del sistema, calculando los coeficientes de desempeño con cada fuente de energía, el biogás mostró un coeficiente de desempeño de 0,18 en energía y de 0,2 en exergía, por su parte la energía solar presentó un desempeño de 0,095 en energía y 0,0065 en exergía y el gas de gasificación tuvo un desempeño de 0,06 en energía y 0,022 en exergía. Finalmente, del análisis económico del sistema se obtuvo que la fuente que presenta los menores costos de operación es la energía solar fotovoltaica, por lo que se recomienda el uso de esta fuente para refrigeración en zonas no interconectadas del departamento. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Corporación Universidad de la Costa | |
dc.publisher | Maestría en Eficiencia Energética y Energías Renovables | |
dc.relation | Acuña, A., Velázquez, N., & Cerezo, J. (2013). Energy analysis of a diffusion absorption cooling system using lithium nitrate, sodium thiocyanate and water as absorbent substances and ammonia as the refrigerant. Applied Thermal Engineering, 51(1–2), 1273–1281.
https://doi.org/10.1016/j.applthermaleng.2012.10.046 | |
dc.relation | Al-Nimr, M. A., & Mugdadi, B. (2020). A hybrid absorption/thermo-electric cooling system driven by a concentrated photovoltaic/thermal unit. Sustainable Energy Technologies and Assessments, 40, 100769. https://doi.org/10.1016/J.SETA.2020.100769 | |
dc.relation | Aman, J., Ting, D. S. K., & Henshaw, P. (2014). Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system. Applied Thermal Engineering, 62(2), 424–432. https://doi.org/10.1016/J.APPLTHERMALENG.2013.10.006 | |
dc.relation | Amaris, C., Vallès, M., & Bourouis, M. (2018). Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review. Applied Energy, 231, 826–853. https://doi.org/10.1016/J.APENERGY.2018.09.071 | |
dc.relation | Anukam, A. I., Goso, B. P., Okoh, O. O., & Mamphweli, S. N. (2017). Studies on
Characterization of Corn Cob for Application in a Gasification Process for Energy
Production. Journal of Chemistry, 2017, 6478389. https://doi.org/10.1155/2017/6478389 | |
dc.relation | Asadi, J., Amani, P., Amani, M., Kasaeian, A., & Bahiraei, M. (2018). Thermo-economic analysis and multi-objective optimization of absorption cooling system driven by various solar collectors. Energy Conversion and Management, 173(August), 715–727.
https://doi.org/10.1016/j.enconman.2018.08.013 | |
dc.relation | ASTM D3172-13. (2013). Standard Practice for Proximate Analysis of Coal and Coke.
https://doi.org/10.1520/D3172-13 | |
dc.relation | ASTM D3173 / D3173M-17a. (2017). Standard Test Method for Moisture in the Analysis
Sample of Coal and Coke. https://doi.org/10.1520/D3173_D3173M-17A | |
dc.relation | ASTM D3174-12. (2018). Standard Test Method for Ash in the Analysis Sample of Coal and
Coke from Coal. https://doi.org/10.1520/D3174-12R18E01 | |
dc.relation | ASTM D3177-02. (2007). Standard Test Methods for Total Sulfur in the Analysis Sample of
Coal and Coke (Withdrawn 2012). https://doi.org/10.1520/D3177-02R07 | |
dc.relation | ASTM D4239-18. (2018). Standard Test Method for Sulfur in the Analysis Sample of Coal and
Coke Using High-Temperature Tube Furnace Combustion. https://doi.org/10.1520/D4239-
18E01 | |
dc.relation | ASTM D5373-16. (2016). Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke.
https://doi.org/10.1520/D5373-16 | |
dc.relation | ASTM D5865 / D5865M-19. (2019). Standard Test Method for Gross Calorific Value of Coal and Coke. https://doi.org/10.1520/D5865_D5865M-19 | |
dc.relation | Balafkandeh, S., Zare, V., & Gholamian, E. (2019). Multi-objective optimization of a trigeneration system based on biomass gasification/digestion combined with S-CO2 cycle and absorption chiller. Energy Conversion and Management, 200, 112057.
https://doi.org/10.1016/J.ENCONMAN.2019.112057 | |
dc.relation | Basu, P. (2018). Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory (Third Edit). Elsevier Science. https://books.google.com.co/books?id=BYM2DwAAQBAJ | |
dc.relation | Bejan, A. (2016). Advanced Engineering Thermodynamics. Wiley.
https://books.google.com.co/books?id=j0zSDAAAQBAJ | |
dc.relation | Bellos, E., Tzivanidis, C., Symeou, C., & Antonopoulos, K. A. (2017). Energetic, exergetic and financial evaluation of a solar driven absorption chiller – A dynamic approach. Energy Conversion and Management, 137, 34–48.
https://doi.org/10.1016/J.ENCONMAN.2017.01.041 | |
dc.relation | Ben Ezzine, N., Garma, R., & Bellagi, A. (2010). A numerical investigation of a diffusionabsorption refrigeration cycle based on R124-DMAC mixture for solar cooling. Energy,
35(5), 1874–1883. https://doi.org/10.1016/j.energy.2009.12.032 | |
dc.relation | Ben Ezzine, N., Garma, R., Bourouis, M., & Bellagi, A. (2010). Experimental studies on bubble pump operated diffusion absorption machine based on light hydrocarbons for solar cooling. Renewable Energy, 35(2), 464–470. https://doi.org/10.1016/j.renene.2009.07.026 | |
dc.relation | Cacua, K., Olmos-Villalba, L., Herrera, B., & Gallego, A. (2016). Experimental evaluation of a diesel-biogas dual fuel engine operated on micro-trigeneration system for power, drying and cooling. Applied Thermal Engineering, 100, 762–767.
https://doi.org/10.1016/J.APPLTHERMALENG.2016.02.067 | |
dc.relation | Calise, F., Libertini, L., & Vicidomini, M. (2017). Design and optimization of a novel solar cooling system for combined cycle power plants. Journal of Cleaner Production.
https://doi.org/10.1016/j.jclepro.2017.06.157 | |
dc.relation | Chejne, F., Valdés, C., Marrugo, G., Gómez, C., Montoya, J., Macías, R., Londoño, C., De La Cruz, J., Ocampo, A., & Arenas, E. (2017). La gasificación, alternativa de generación de energía y productos con alto valor agregado para la industria. Medellín: Universidad Nacional de Colombia. | |
dc.relation | Costa, V. A. F., Tarelho, L. A. C., & Sobrinho, A. (2019). Mass, energy and exergy analysis of a biomass boiler: A portuguese representative case of the pulp and paper industry. Applied Thermal Engineering, 152(January), 350–361.
https://doi.org/10.1016/j.applthermaleng.2019.01.033 | |
dc.relation | Dayton, D. C., & Foust, T. D. (2020). Chapter Two - Biomass Characterization. In D. C. Dayton & T. D. Foust (Eds.), Analytical Methods for Biomass Characterization and Conversion (pp. 19–35). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-815605-6.00002-0 | |
dc.relation | de Jong, W., & van Ommen, J. R. (2014). Biomass as a Sustainable Energy Source for the
Future: Fundamentals of Conversion Processes. Wiley.
https://books.google.com.co/books?id=gm8TBwAAQBAJ | |
dc.relation | de Kuyper, J. C. V, & Morales, S. R. (2014). Fuentes de energía, renovables y no renovables:
aplicaciones. Alfaomega. https://books.google.com.co/books?id=-P78jgEACAAJ | |
dc.relation | Dincer, I., & Rosen, M. A. (2007). Exergy: Energy, Environment and Sustainable Development.
Elsevier Science. https://books.google.com.co/books?id=ruR7U3IjrR0C | |
dc.relation | DNP Colombia. (2016). Pérdida y Desperdicio de alimentos en Colombia: Estudio de la Dirección de Seguimiento y Evaluación de Políticas Públicas. Departamento Nacional de Planeación. | |
dc.relation | El Haj Assad, M., Nazari, M. A., Ehyaei, M. A., & Rosen, M. A. (2021). Heat pumps and absorption chillers. In Design and Performance Optimization of Renewable Energy Systems
(pp. 163–180). Elsevier. https://doi.org/10.1016/b978-0-12-821602-6.00013-4 | |
dc.relation | Fao. (2012). Pérdidas y desperdicio de alimentos en el mundo – Alcance, causas y prevención. In Roma. https://doi.org/10.3738/1982.2278.562 | |
dc.relation | Fenalce. (2020). Maíz para Colombía, visión 2030. Www.Fenalce.Org.
https://www.fenalce.org/alfa/pg.php?pa=1 | |
dc.relation | Fuess, L. T., & Garcia, M. L. (2017). Anaerobic biodigestion for enhanced bioenergy generation in ethanol biorefineries: Understanding the potentials of vinasse as a biofuel. In Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen (pp. 149–183). Elsevier
Inc. https://doi.org/10.1016/B978-0-08-101031-0.00005-3 | |
dc.relation | Gamarra Quintero, J. S., Gonzalez, C. A. D., & Pacheco Sandoval, L. (2021). Exergoeconomic analysis of a simulated system of biomass gasification-based power generation with surplus syngas storage in a rural zone in Colombia. Sustainable Energy Technologies and Assessments, 44, 101075. https://doi.org/10.1016/j.seta.2021.101075 | |
dc.relation | Gebrehawariat, E., Animut, G., Urge, M., & Mekasha, Y. (2016). Sun-Dried Bovine Rumen Content (SDRC) as an Ingredient of a Ration for White Leghorn Layers. East African Journal of Sciences, 10(1), 29–40. | |
dc.relation | Gomez, R. D., Palacio, M., Arango, J. F., Avila, A. E., & Mendoza, J. M. (2021). Evaluation of the energy generation potential by an experimental characterization of residual biomass blends from Córdoba, Colombia in a downdraft gasifier. Waste Management, 120, 522–529.
https://doi.org/10.1016/j.wasman.2020.10.014 | |
dc.relation | IDEAM. (2020). Atlas de radiación solar. http://atlas.ideam.gov.co/visorAtlasRadiacion.html | |
dc.relation | IPSE. (2020). Caracterizacion energética de zonas no interconectadas (Vol. 2).
https://ipse.gov.co/cnm/caracterizacion-de-las-zni/ | |
dc.relation | Isaza, C., Pilatowsky, I., Romero, R., & Cortés, F. (2010). Análisis termodinámico de un sistema de refrigeración solar por absorción usando soluciones de Monometolamina - agua para la conservación de alimentos. Biotecnología En El Sector Agropecuario y Agroindustrial, 8, 18–25. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-
35612010000100003&nrm=iso | |
dc.relation | ISO 562-10. (2010). specifies a method of determining the volatile matter of hard coal and of
coke. https://www.iso.org/standard/55943.html | |
dc.relation | Lazzarin, R. M., & Noro, M. (2018). Past, present, future of solar cooling: Technical and
economical considerations. Solar Energy. https://doi.org/10.1016/j.solener.2017.12.055 | |
dc.relation | León Mejía, J. M., & Novoa Posada, A. L. (2018). Evaluación del rendimiento energético del biogás de estiércol bovino empleando la tecnología mci en ciclo otto y diésel para la generación de potencia en el departamento de Córdoba.
https://repositorio.unicordoba.edu.co/handle/ucordoba/668 | |
dc.relation | Lesme, R. L., Martillo, J., & Oliva, L. (2020). Estudio de la gasificación de la tusa del maíz para la generación de electricidad Study of the corn cob gasification of the for the electricity
generation Métodos y Materiales. 23(3), 1–9. | |
dc.relation | Li, X., Kan, X., Sun, X., Zhao, Y., Ge, T., Dai, Y., & Wang, C. H. (2019). Performance analysis
of a biomass gasification-based CCHP system integrated with variable-effect LiBr-H2O absorption cooling and desiccant dehumidification. Energy, 176, 961–979.
https://doi.org/10.1016/J.ENERGY.2019.04.040 | |
dc.relation | López, A. R., Krumm, A., Schattenhofer, L., Burandt, T., Montoya, F. C., Oberländer, N., & Oei, P. Y. (2020). Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market. Renewable Energy, 148, 1266–1279.
https://doi.org/10.1016/j.renene.2019.10.066 | |
dc.relation | López González, L. M., Pereda Reyes, I., Escobar Román, R., Pedraza Garciga, J., & Romero Romero, O. (2018). Efecto de la aplicación de métodos de pre-tratamientos en el proceso de digestión anaerobia de la biomasa lignocelulósica. Tecnología Química, 38(2), 324–334.
http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-
61852018000200010&lng=es&nrm=iso&tlng=es | |
dc.relation | Macriss, R A; Gutraj, J M; Zawacki, T. S. (1988). Absorption fluids data survey: Final report on worldwide data. https://doi.org/AC05-84OR21400 | |
dc.relation | Mansouri, R., Bourouis, D. M., & Dr. Ahmed Bellagi. (2016). ABSORPTION / DIFFUSION REFRIGERATING MACHINES USING AMMONIA AS A REFRIGERANT : SIMULATION UNDER STEADY-STATE AND DYNAMIC REGIMES The eoretic cal and d expe riment tal stud dy of a absorpt tion an nd abs orption n / diffus sion re efrigera ating m machin e.
Universitat Rovira I Virgili. | |
dc.relation | Martillo Aseffe, J. A., Martínez González, A., Jaén, R. L., & Silva Lora, E. E. (2021). The corn cob gasification-based renewable energy recovery in the life cycle environmental performance of seed-corn supply chain: An Ecuadorian case study. Renewable Energy, 163, 1523–1535. https://doi.org/10.1016/j.renene.2020.10.053 | |
dc.relation | Mendoza, J., Rhenals-Julio, J., Avila, A., & Durando, E. (2021). Análise Exergoeconômica da Gasificação de Sabugo de Milho Integrado em um Sistema de Geração de Energia: Estudo
de Caso na Colômbia. 76, 1–7. | |
dc.relation | Ministerio de minas y energías. (2016). Plan de acción indicativo de eficiencia energética 2017-
2022. http://www1.upme.gov.co/Documents/PAI_PROURE_2017_2022.pdf | |
dc.relation | Moharramian, A., Soltani, S., Rosen, M. A., Mahmoudi, S. M. S., & Jafari, M. (2019).
Conventional and enhanced thermodynamic and exergoeconomic analyses of a photovoltaic combined cycle with biomass post firing and hydrogen production. Applied Thermal Engineering, 160, 113996. https://doi.org/10.1016/j.applthermaleng.2019.113996 | |
dc.relation | Molina, G., Gupta, V. K., Singh, B. N., & Gathergood, N. (2020). Bioprocessing for
Biomolecules Production. Wiley. https://books.google.com.co/books?id=Eb64DwAAQBAJ | |
dc.relation | Neveras triviales. (2021). No Title. https://www.serviciodometicwaeco.com/neveras-trivalentesf8.html | |
dc.relation | Nikbakhti, R., Wang, X., Hussein, A. K., & Iranmanesh, A. (2020). Absorption cooling systems
– Review of various techniques for energy performance enhancement. Alexandria
Engineering Journal, 59(2), 707–738. https://doi.org/10.1016/J.AEJ.2020.01.036 | |
dc.relation | Olaya, Y., & Gonzalez, L. (2009). Fundamentos para el diseño de biodigestores. Módulo para la asignatura de Construcciones Agrícolas. In Universidad nacional de Colombia (Vol. 51,
Issue 2). https://doi.org/10.1017/CBO9781107415324.004 | |
dc.relation | OPUREB&DANM. (2016). Desarrollo de integración tecnológica de recursos energéticos
renovables en sistemas productivos agrícolas y agroindustriales Montería, Córdoba, Caribe. | |
dc.relation | Palencia-Severiche, G., Mercado-F, T., & Combath-Caballero, E. (2006). Estudio agroclimático
de Córdoba. In Facultad de Ciencias Agrícolas. Universidad de Córdoba. Montería,
Colombia. | |
dc.relation | Querol, E., Gonzalez-Regueral, B., & Perez-Benedito, J. L. (2012). Practical Approach to Exergy and Thermoeconomic Analyses of Industrial Processes. Springer London.
https://books.google.com.co/books?id=d8BPo78kjocC | |
dc.relation | Razmi, A. R., & Janbaz, M. (2020). Exergoeconomic assessment with reliability consideration of a green cogeneration system based on compressed air energy storage (CAES). Energy Conversion and Management, 204, 112320.
https://doi.org/10.1016/j.enconman.2019.112320 | |
dc.relation | REN21. (2017). Ren 21 - Renewable Global Futures Report. Great debates towards 100 %
renewable energy. Ren21. https://doi.org/10.1109/JRPROC.1918.217382 | |
dc.relation | Rhenals, J. D., & Torres, M. L. (2016). ANÁLISIS EXERGOECONÓMICO DE LA
GASIFICACIÓN DE TUSA DE MAÍZ EMPLEANDO VAPOR DE AGUA COMO AGENTE
GASIFICANTE, INTEGRADO A UN SISTEMA DE GENERACIÓN DE POTENCIA.
https://repositorio.unicordoba.edu.co/handle/ucordoba/669 | |
dc.relation | Rodríguez-Muñoz, J. L., & Belman-Flores, J. M. (2014). Review of diffusion-absorption refrigeration technologies. In Renewable and Sustainable Energy Reviews (Vol. 30, pp.
145–153). Pergamon. https://doi.org/10.1016/j.rser.2013.09.019 | |
dc.relation | Rokni, M. (2018). Design and analysis of a waste gasification energy system with solid oxide fuel cells and absorption chillers. International Journal of Hydrogen Energy, 43(11), 5922–
5938. https://doi.org/10.1016/J.IJHYDENE.2017.10.123 | |
dc.relation | Sagastume, A., Mendoza, J. M., Cabello, J. J., & Rhenals, J. D. (2021). The Available Waste-toenergy Potential from Agricultural Wastes in the Department of Córdoba , Colombia.
11(3), 44–50. | |
dc.relation | Sakirkin, S., Morgan, C., Macdonald, J., & Auvermann, B. (2011). Effect of Diet Composition on the Determination of Ash and Moisture Content in Solid Cattle Manure Using Visible
and Near-Infrared Spectroscopy. Applied Spectroscopy, 65, 1056–1061.
https://doi.org/10.1366/11-06333 | |
dc.relation | Sayadi, Z., Ben Thameur, N., Bourouis, M., & Bellagi, A. (2013). Performance optimization of solar driven small-cooled absorption-diffusion chiller working with light hydrocarbons. Energy Conversion and Management, 74, 299–307.
https://doi.org/10.1016/j.enconman.2013.05.029 | |
dc.relation | Secretaría de desarrollo economico de Córdoba. (2018). Evaluaciones agropecuarias
municipales. Gobernación de Córdoba. | |
dc.relation | Sevinchan, E., Dincer, I., & Lang, H. (2019). Energy and exergy analyses of a biogas driven
multigenerational system. Energy, 166, 715–723.
https://doi.org/10.1016/J.ENERGY.2018.10.085 | |
dc.relation | Shariff, A., Mohamad Aziz, N. S., Ismail, N. I., & Abdullah, N. (2016). Corn Cob as a Potential Feedstock for Slow Pyrolysis of Biomass. Journal of Physical Science, 27(2), 123–137. https://doi.org/10.21315/jps2016.27.2.9 | |
dc.relation | Siddiki, S. Y. A., Uddin, M. N., Mofijur, M., Fattah, I. M. R., Ong, H. C., Lam, S. S., Kumar, P. | |
dc.relation | S., & Ahmed, S. F. (2021). Theoretical calculation of biogas production and greenhouse gas emission reduction potential of livestock, poultry and slaughterhouse waste in Bangladesh.
Journal of Environmental Chemical Engineering, 9(3), 105204.
https://doi.org/10.1016/j.jece.2021.105204 | |
dc.relation | SIEL. (2017). Cobertura de Energía Eléctrica a 2016.
http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ConsultasEstadi
sticas/tabid/81/Default.aspx | |
dc.relation | SIEL. (2018). Indice de cobertura de energía electrica.
http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ConsultasEstadi
sticas/tabid/81/Default.aspx | |
dc.relation | Silva, S. R., Bonanato, G., Costa, E. F. da, Sarrouh, B., & Costa, A. O. S. da. (2021). Specific chemical exergy prediction for biological molecules using hybrid models. Chemical Engineering Science, 235, 116462. https://doi.org/10.1016/j.ces.2021.116462 | |
dc.relation | Unidad de Planeación Minero-Energética [UPME]. (2021). Balance energético Colombiano.
Balance Energético Colombiano.
http://www1.upme.gov.co/InformacionCifras/Paginas/PETROLEO.aspx | |
dc.relation | Unidad de Planeación Minero Energética. (2015). Integración de las Energías Renovables No
Convencionales en Colombia. In Unidad de Planeación Minero Energética.
http://www1.upme.gov.co/DemandaEnergetica/INTEGRACION_ENERGIAS_RENOVAN
LES_WEB.pdf | |
dc.relation | Unidad de Planeación Minero Energética - UPME. (2016). Boletín Estadístico de Minas y energía 2012 – 2016. Ministerio de Minas y Energía.
https://doi.org/10.1017/CBO9781107415324.004 | |
dc.relation | Vazini Modabber, H., & Khoshgoftar Manesh, M. H. (2021). 4E dynamic analysis of a waterpower cogeneration plant integrated with solar parabolic trough collector and absorption
chiller. Thermal Science and Engineering Progress, 21, 100785.
https://doi.org/10.1016/J.TSEP.2020.100785 | |
dc.relation | Yildiz, A., & Ersöz, M. A. (2013). Energy and exergy analyses of the diffusion absorption
refrigeration system. Energy, 60, 407–415. https://doi.org/10.1016/J.ENERGY.2013.07.062 | |
dc.relation | Yildiz, A., Ersöz, M. A., & Gözmen, B. (2014). Effect of insulation on the energy and exergy
performances in Diffusion Absorption Refrigeration (DAR) systems. International Journal
of Refrigeration, 44, 161–167. https://doi.org/10.1016/J.IJREFRIG.2014.04.021 | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | Renewable energies | |
dc.subject | Cooling | |
dc.subject | Exergy | |
dc.subject | Absorption-diffusion | |
dc.subject | Biomass | |
dc.subject | Solar radiation | |
dc.subject | Energías renovables | |
dc.subject | Refrigeración | |
dc.subject | Exergía | |
dc.subject | Absorción-difusión | |
dc.subject | Biomasa | |
dc.subject | Radiación solar | |
dc.title | Análisis energético y exergético de un sistema de refrigeración absorción-difusión con diferentes fuentes de calor | |
dc.type | Trabajo de grado - Maestría | |
dc.type | http://purl.org/coar/resource_type/c_bdcc | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/masterThesis | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/TM | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |