dc.contributorSagastume Gutierrez, Alexis
dc.contributorAmaris, Carlos
dc.contributorArencibia, Karen
dc.contributorCabello Eras, Juan José
dc.creatorRodríguez Toscano, Andrés David
dc.date2022-11-09T16:51:22Z
dc.date2022-11-09T16:51:22Z
dc.date2022
dc.date.accessioned2023-10-03T19:58:34Z
dc.date.available2023-10-03T19:58:34Z
dc.identifierhttps://hdl.handle.net/11323/9608
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173523
dc.descriptionEn esta tesis doctoral se presenta una evaluación de la factibilidad técnica, ambiental y económica de la implementación de sistemas de refrigeración por absorción en centros comerciales ubicados en la ciudad de Barranquilla, Colombia, usando H2O/LiBr y NH3/LiNO3 como fluidos de trabajo, considerando diferentes fuentes de energía para su activación (energía solar y/o gas natural). Para llevar a cabo esta investigación, se realizó una revisión de la literatura especializada de la tecnología. Se seleccionaron tres centros comerciales que caracterizan el mayor número de este tipo de edificaciones de acuerdo con el área a acondicionar y el tamaño disponible para la instalación de los sistemas. Posteriormente, se estimó la carga térmica para el acondicionamiento de aire en los centros comerciales a partir de mediciones de la potencia eléctrica y se identificó condiciones críticas de operación. Luego, se desarrolló un modelo termodinámico de los sistemas de refrigeración por absorción utilizando energía solar y/o gas natural y se validó con datos del fabricante para diferentes series de sistemas de refrigeración por absorción obteniendo errores relativos menores del 1% en el evaporador y generador. Con este, se realizó un análisis de sensibilidad de las características técnicas e indicadores de desempeño de todo el sistema usando los dos fluidos de trabajo y dos tipos de colectores solares térmicos. Luego, se estudiaron los diferentes escenarios planteados para los centros comerciales seleccionados considerando, factores técnicos (incluyendo mantenimiento), ambientales y económicos. Con ello, se determinó que tipo de colector solar térmico, fluido de trabajo, fuente de energía para la activación, configuración y que condiciones de operación eran las más adecuadas para implementar en sistemas de refrigeración por absorción en la ciudad. También, se obtuvieron como resultado en algunos escenarios, IRR de hasta el 54,6 %, tiempos de retornos de la inversión bajos de entre 2 y 3 años, COP de hasta 0,77 y SCOP de hasta 0,52 en las condiciones más críticas correspondientes al día típico del mes seleccionado. Si se desea llevar estos estudios de factibilidad a un mayor nivel de detalle que permita estudiar los mecanismos de transferencia de masa y calor, se requerirá evaluar los componentes claves del sistema. Por ello, al final se desarrolló como una herramienta complementaria para futuras investigaciones, una metodología para simular absorbedores de burbujas mediante un modelo CFD y evaluar dichos mecanismos considerando los modelos multifase, los modelos de turbulencia y mezcla, la prueba de independencia del mallado, la cantidad de elementos de la malla y las variables para validar el modelo CFD correctamente ( lo que no estaba definido con claridad en la literatura especializada).
dc.descriptionThis doctoral thesis presents an evaluation of the technical, environmental and economic feasibility of the implementation of absorption refrigeration systems in shopping centers located in the city of Barranquilla, Colombia, using H2O/LiBr and NH3/LiNO3 as working fluids. considering different energy sources for its activation (solar energy and/or natural gas). To carry out this research, a review of the specialized literature of the technology was carried out. Three shopping centers were selected that characterize the largest number of this type of buildings according to the area to be conditioned and the size available for the installation of the systems. Subsequently, the thermal load for air conditioning in shopping centers was estimated from electrical power measurements and critical operating conditions were identified. Then, a thermodynamic model of absorption refrigeration systems using solar energy and/or natural gas was developed and validated with manufacturer data for different series of absorption refrigeration systems, obtaining relative errors of less than 1% in the evaporator and generator. . With this, a sensitivity analysis of the technical characteristics and performance indicators of the entire system was carried out using the two working fluids and two types of solar thermal collectors. Then, the different scenarios proposed for the selected shopping centers were studied, considering technical (including maintenance), environmental and economic factors. With this, it was determined what type of solar thermal collector, working fluid, energy source for activation, configuration and what operating conditions were the most appropriate to implement in absorption refrigeration systems in the city. Also, as a result in some scenarios, IRR of up to 54.6%, low investment return times of between 2 and 3 years, COP of up to 0.77 and SCOP of up to 0.52 in the most favorable conditions were obtained. reviews corresponding to the typical day of the selected month. If it is desired to take these feasibility studies to a higher level of detail that allows studying the mechanisms of mass and heat transfer, it will be necessary to evaluate the key components of the system. For this reason, in the end, a methodology was developed as a complementary tool for future research to simulate bubble absorbers by means of a CFD model and to evaluate said mechanisms considering multiphase models, turbulence and mixing models, the mesh independence test, the number of mesh elements and variables to validate the CFD model correctly (which was not clearly defined in the specialized literature).
dc.descriptionResumen 7 -- Abstract 9 -- Lista de Figuras 11 -- Lista de Tablas 11 -- Nomenclatura 15 -- Capítulo 1: Introducción 18 -- 1.1 Problemática 18 -- 1.2 Justificación 20 -- 1.3 Preguntas de investigación 22 -- 1.4 Objetivo 23 -- 1.4.1 Objetivo general 23 -- 1.4.2 Objetivos específicos 23 -- 1.5 Metodología de investigación 24 -- 1.6 Estructura del documento 26 -- Capítulo 2: Estado del arte 28 -- 2.1 Introducción 28 -- 2.2 Tecnología de refrigeración por absorción 28 -- 2.3 Fluidos de trabajo (convencionales y otros de potencial uso futuro) 37 -- 2.4 Sistemas de refrigeración por absorción para acondicionamiento de aire 44 -- 2.5 Sistemas de refrigeración por absorción activados con energía solar y otras fuentes alternativas de energía 47 -- 2.6 Mercado actual de sistemas de refrigeración por absorción para el acondicionamiento de aire 52 -- 2.7 Indicadores técnico-económicos para la evaluación de sistemas de refrigeración por absorción 55 -- 2.8 Colectores solares térmicos 58 -- 2.8.1 Mercado actual de colectores solares térmicos 60 -- 2.9 Proceso de absorción en absorbedores 62 -- 2.9.1 Modelación CFD de absorbedores 64 -- Capítulo 3: Metodología 68 -- 3.1 Introducción 68 -- 3.2 Condiciones ambientales de Barranquilla 68 -- 3.3 Características principales de los centros comerciales de Barranquilla 69 -- 3.3.1 Casos de estudio 71 -- 3.3.2 Mediciones 73 -- 3.4 Configuración del sistema estudiado y casos de estudio 74 -- 3.5 Escenarios de aplicación de la refrigeración por absorción 75 -- 3.6 Modelo de simulación termodinámica 76 -- 3.6.1 Consideraciones 76 -- 3.6.2 Balances de masa y energía 77 -- 3.6.3 Parámetros de evaluación técnica 80 -- 3.7 Impacto ambiental 80 -- 3.8 Evaluación económica 81-- 3.9 Características del modelo CFD de un absorbedor de burbuja 84 -- 3.9.1 Geometría y detalles de malla 86 -- 3.9.2 Selección del modelo multifase 88 -- 3.9.3 Ecuaciones gobernantes 88 -- 3.9.4 Condiciones de frontera y métodos de solución 91 -- 3.9.5 Condiciones para la validación del modelo CFD 93 -- Capítulo 4: Resultados técnicos, ambientales y económicos 95 --4.1 Introducción 95 -- 4.2 Validación de modelo termodinámico 95 -- 4.2.1 Condiciones de operación y parámetro 95 -- 4.2.2 Resultados de la validación 97 -- 4.3 Análisis de sensibilidad para el sistema con H2O/LiBr 98 -- 4.4 Análisis de sensibilidad para sistema con NH3/LiNO3 105 -- 4.5 Consumo de energía de enfriadoras de compresión mecánica en centros comerciales escenario base) 109 -- 4.6 Casos estudios (escenarios 2, 3 y 4) 111 -- 4.6.1 Enfriadoras por absorción activadas con energía solar 112 -- 4.6.2 Enfriadoras por absorción activadas con gas natural 118 -- 4.6.3 Enfriadoras por absorción activadas con energía solar y gas natural 115 -- 4.6.4 Emisiones de gases de efecto invernadero 122 -- 4.6.5 Análisis económico 124 -- Capítulo 5: Análisis CFD del absorbedor 127 -- 5.1 Introducción 127 -- 5.2 Selección de modelos de turbulencia y mezcla 127 -- 5.3 Prueba de independencia de la malla 128 -- 5.4 Resultados de transferencia de masa 129 -- 5.5 Resultados de transferencia de calor 133 -- 5.6 Validación de modelo CFD 138 -- Capítulo 6: Conclusiones y trabajos futuros 140 -- 6.1 Conclusiones de los resultados técnico, ambiental y económico 140 -- 6.2 Conclusiones del análisis CFD del absorbedor 143 -- 6.3 Recomendaciones para trabajos futuros 144 -- Referencias 146 -- Anexos 146 -- Publicaciones 169
dc.descriptionDoctor(a) en Ingenieria Energética
dc.descriptionDoctorado
dc.format169 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.publisherEnergía
dc.publisherBarranquilla, Colombia
dc.publisherDoctorado en Ingenieria Energética
dc.relation[1] M. Aune, Å. L. Godbolt, K. H. Sørensen, M. Ryghaug, H. Karlstrøm, and R. Næss, “Concerned consumption. Global warming changing household domestication of energy,” Energy Policy, vol. 98, pp. 290–297, 2016, doi:10.1016/j.enpol.2016.09.001.
dc.relation[2] S. Saint Akadiri, A. Adewale Alola, G. Olasehinde-Williams, and M. Udom Etokakpan, “The role of electricity consumption, globalization and economic growth in carbon dioxide emissions and its implications for environmental sustainability targets,” Sci. Total Environ., vol. 708, p. 134653, 2020, doi:10.1016/j.scitotenv.2019.134653.
dc.relation[3] H. Lu, F. Cheng, X. Ma, and G. Hu, “Short-term prediction of building energy consumption employing an improved extreme gradient boosting model : A case study of an intake tower,” Energy, vol. 203, p. 117756, 2020, doi:10.1016/j.energy.2020.117756.
dc.relation[4] J. S. Hassan, R. M. Zin, M. Z. A. Majid, S. Balubaid, and M. R. Hainin, “Building energy consumption in Malaysia: An overview,” J. Teknol., vol. 70, no. 7, pp. 33–38, 2014, doi: 10.11113/jt.v70.3574.
dc.relation[5] H. Li and X. Li, “Benchmarking energy performance for cooling in large commercial buildings,” Energy Build., vol. 176, pp. 179–193, 2018, doi: 10.1016/j.enbuild.2018.07.039.
dc.relation[6] I. International Institute of Refrigeration, “The Role of Refrigeration in the Global Economy,” Inf. Note Refrig. Technol. /, vol. 29, no 1. November, 2015, p. 12, 2015. Accessed: May 24, 2020. [Online]. Disponible: www.iifiir.org.
dc.relation[7] OECD/IEA, “News. Air conditioning use emerges as one of the key drivers of global electricity-demand growth,” IEA Publications, 2018. https://www.iea.org/news/airconditioning-use-emerges-as-one-of-the-key-drivers-of-global-electricity-demandgrowth (accessed Jun. 12, 2020).
dc.relation[8] ACAIRE, “Refrigeración y aire acondicionado Crecimiento del sector - Asociación Colombiana de Acondicionamiento de aire,” Refrigeración y aire acondicionado Crecimiento del sector - Asociación Colombiana de Acondicionamiento de aire, 2017. https://acaire.org/2018/07/09/refrigeracion-y-aire-acondicionado-crecimiento-delsector/ (accessed Jun. 12, 2020).
dc.relation[9] Ministerio de Minas y Energía (MME), “Plan de acción indicativo de eficiencia energética 2017-2022 de Colombia,” 2016.
dc.relation[10] UPME, Programa de las Naciones Unidas para el Desarrollo - PNUD, and C. CMA, “GEF/PNUD/COL/76979 – Normalización y Etiquetado de Eficiencia Energética en Colombia (N & E Colombia),” p. 469, 2015, [Online]. Disponible: http://www.etiquetaenergetica.gov.co/wpcontent/uploads/2017/01/Estudio_Estructura_y_Transformacion_del_Mercado_Equi pos_RETIQ.pdf.
dc.relation[11] M. De Minas et al., “REPÚBLICA DE COLOMBIA,” 2007.
dc.relation[12] S. S. Chauhan and S. P. S. Rajput, “Experimental analysis of an evaporative–vapour compression based combined air conditioning system for required comfort conditions,” Appl. Therm. Eng., vol. 115, pp. 326–336, 2017, doi:10.1016/j.applthermaleng.2016.12.072.
dc.relation[13] El Universal, “La energía en la Costa: Un problema de hace más de una década | EL UNIVERSAL - Cartagena,” 2016. https://www.eluniversal.com.co/regional/laenergia-en-la-costa-un-problema-de-hace-mas-de-una-decada-240194-AXEU348549 (accessed Sep. 12, 2020).
dc.relation[14] J. Vence and M. Kammerer, “Crisis en la costa ceribe del servicio de energía eléctrica prestando por la empresa electricaribe.,” 2016.
dc.relation[15] A. A. Al-Ugla, M. A. I. El-Shaarawi, S. A. M. Said, and A. M. Al-Qutub, “Technoeconomic analysis of solar-assisted air-conditioning systems for commercial buildings in Saudi Arabia,” Renew. Sustain. Energy Rev., vol. 54, pp. 1301–1310, 2016, doi: 10.1016/j.rser.2015.10.047.
dc.relation[16] K. F. Fong, T. T. Chow, C. K. Lee, Z. Lin, and L. S. Chan, “Comparative study of different solar cooling systems for buildings in subtropical city,” Sol. Energy, vol. 84, no. 2, pp. 227–244, 2010, doi: 10.1016/j.solener.2009.11.002.
dc.relation[17] R. Nikbakhti, X. Wang, A. K. Hussein, and A. Iranmanesh, “Absorption cooling systems – Review of various techniques for energy performance enhancement,” Alexandria Eng. J., vol. 59, no. 2, pp. 707–738, 2020, doi: 10.1016/j.aej.2020.01.036.
dc.relation[18] Absorsistem, “Principio y antecedentes históricos del ciclo de refrigeración por absorción Absorsistem,” 2020. https://www.absorsistem.com/tecnologia/absorcion/principio-y-antecedenteshistoricos-del-ciclo-de-refrigeracion-por-absorcion (accessed Aug. 02, 2020).
dc.relation[19] D. Keppler, “Absorption chillers as a contribution to a climate-friendly refrigeration supply regime: Factors of influence on their further diffusion,” J. Clean. Prod., vol. 172, no. 2018, pp. 1535–1544, 2018, doi: 10.1016/j.jclepro.2017.10.276.
dc.relation[20] C. Amaris, “Intensification of NH3 bubble absorption process using advanced surfaces and carbon nanotubes for NH3/LiNO3 absorption chillers,” Doctoral thesis, Universitat Rovira i Virgili, Tarragona, España, 2013.
dc.relation[21] C. A. Balaras et al., “Solar air conditioning in Europe-an overview,” Renew. Sustain. Energy Rev., vol. 11, no. 2, pp. 299–314, 2007, doi: 10.1016/j.rser.2005.02.003.
dc.relation[22] A. Ghafoor and A. Munir, “Worldwide overview of solar thermal cooling technologies,” Renew. Sustain. Energy Rev., vol. 43, pp. 763–774, 2015, doi:10.1016/j.rser.2014.11.073.
dc.relation[23] W. Sparber, A. Napolitano, and P. Melograno, “Overwiew on world wide installed solar cooling systems,” 2nd Int. Conf. Sol. Air Cond., no. October, pp. 1–6, 2007.
dc.relation[24] J. Asadi, P. Amani, M. Amani, A. Kasaeian, and M. Bahiraei, “Thermo-economic analysis and multi-objective optimization of absorption cooling system driven by various solar collectors,” Energy Convers. Manag., vol. 173, no. July, pp. 715–727, 2018, doi: 10.1016/j.enconman.2018.08.013.
dc.relation[25] A. García, “Bajar costos: reto de la refrigeración solar | ACR Latinoamérica,” Bajar costos: reto de la refrigeración solar, 2012. https://www.acrlatinoamerica.com/201207054847/articulos/refrigeracion-comerciale-industrial/bajar-costos-reto-de-la-refrigeracion-solar.html (accessed Aug. 02, 2020).
dc.relation[26] Unidad de Planeación Minero Energética - UPME, “Integración de las energías renovables no convencionales en Colombia,” in Portal UPME/ Demanda y Eficiencia Energética, Portal UPME/ Demanda y Eficiencia Energética, 2015.
dc.relation[27] Y. Díaz-Torres and J. Monteagudo-Yanes, “Sistemas de climatización solar de absorción. Barreras y perspectivas,” Energética, vol. 43, pp. 31–43, 2014.
dc.relation[28] IEA, “Perspectivas energéticas mundiales 2019 - Análisis - IEA,” Perspectivas energéticas mundiales 2019, 2019. https://www.iea.org/reports/world-energyoutlook-2019# (accessed Sep. 14, 2020).
dc.relation[29] Data world bank, “CO2 emissions (metric tons per capita),” World bank, 2019. http://data.worldbank.org/indicator/EN.ATM.CO2E.PC (accessed Sep. 14, 2020).
dc.relation[30] Universidad Nacional, “Caracterización del consumo de energía final en los sectores terciario, grandes establecimientos comerciales, centros comerciales y determinación de consumos para sus respectivos equipos de uso de energía final”, UPME, Colomabia, Tech. Rep.,vol. 1, 2007.
dc.relation[31] A. Juaidi, F. AlFaris, F. Montoya, and F. Manzano-Agugliaroa, “Energy benchmarking for shopping centers in Gulf Coast region,” Energy Policy, vol. 91, pp. 247–255, 2016.
dc.relation[32] EPM, “Gas natural,” 2020. https://www.epm.com.co/site/clientes_usuarios/clientesy-usuarios/hogares-y-personas/gas-natural (accessed May 25, 2020).
dc.relation[33] CODENSA S.A. ESP, “Generalidades 7.6 Sistemas de emergencia instalados por el cliente | Likinormas,” Generalidades 7.6 Sistemas de emergencia instalados por el cliente, 2020. https://likinormas.micodensa.com/Norma/acometidas_medidores/sistemas_emergencia_instalados_cliente/generalidades_7_6_sistemas_emergencia_instalados_cliente(accessed Nov. 11, 2020).
dc.relation[34] J. Jiang, W. Gao, X. Wei, Y. Li, and S. Kuroki, “Reliability and cost analysis of the redundant design of a combined cooling, heating and power (CCHP) system,” Energy Convers. Manag., vol. 199, p. 111988, Nov. 2019. doi:10.1016/j.enconman.2019.111988.
dc.relation[35] J. Jiang, X. Wei, W. Gao, S. Kuroki, and Z. Liu, “Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems,” Energies, vol. 11, no. 6, p. 1519, Jun. 2018. doi: 10.3390/en11061519.
dc.relation[36] A. Allouhi, T. Kousksou, A. Jamil, P. Bruel, Y. Mourad, and Y. Zeraouli, “Solar driven cooling systems: An updated review,” Renew. Sustain. Energy Rev., vol. 44, pp. 159–181, 2015. doi: 10.1016/j.rser.2014.12.014.
dc.relation[37] O. Ketfi, M. Merzouk, N. K. Merzouk, and M. Bourouis, “Étude de faisabilité et évaluation de la performance des systèmes de refroidissement à absorption eau–LiBrà faible capacité fonctionnant dans différentes zones climatiques algériennes,” Int. J. Refrig., vol. 82, no. 26, pp. 36–50, 2017. doi: 10.1016/j.ijrefrig.2017.07.002.
dc.relation[38] B. Ghorbani, R. Shirmohammadi, and M. Mehrpooya, “A novel energy efficient LNG/NGL recovery process using absorption and mixed refrigerant refrigeration cycles – Economic and exergy analyses,” Appl. Therm. Eng., vol. 132, pp. 283–295. Mar. 2018, doi: 10.1016/j.applthermaleng.2017.12.099.
dc.relation[39] S. Akhtar, T. S. Khan, S. Ilyas, and M. S. Alshehhi, “Feasibility and Basic Design of Solar Integrated Absorption Refrigeration for an Industry,” in Energy Procedia, 2015, vol. 75, pp. 508–513. doi: 10.1016/j.egypro.2015.07.441.
dc.relation[40] K. Herold, R. Radermacher, and S. Klein, Applications of Absorption Chillers and Heat Pumps. 2016.
dc.relation[41] C. Amaris and M. Bourouis, “Boiling process assessment for absorption heat pumps: A review,” Int. J. Heat Mass Transf., vol. 179, Nov. 2021. doi:10.1016/J.IJHEATMASSTRANSFER.2021.121723.
dc.relation[42] C. Amaris, M. Vallès, and M. Bourouis, “Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review,” Applied Energy, vol. 231, pp. 826–853, 2018, doi: 10.1016/j.apenergy.2018.09.071.
dc.relation[43] D. Mugnier, D. Neyer, and S. D. White, The Solar Cooling Design Guide - Case Studies of Successful Solar Air Conditioning Design. 2017.
dc.relation[44] P. Srikhirin, S. Aphornratana, and S. Chungpaibulpatana, “A review of absorption refrigeration technologies,” Renewable and Sustainable Energy Reviews, vol. 5, no. 4. pp. 343–372, Dec. 2000 doi: 10.1016/S1364-0321(01)00003-X.
dc.relation[45] J. Deng, R. Z. Wang, and G. Y. Han, “A review of thermally activated cooling technologies for combined cooling, heating and power systems,” Prog. Energy Combust. Sci., vol. 37, no. 2, pp. 172–203, 2011. doi: 10.1016/j.pecs.2010.05.003.
dc.relation[46] A. A. Al-Abidi, S. Bin Mat, K. Sopian, M. Y. Sulaiman, C. H. Lim, and A. Th, “Review of thermal energy storage for air conditioning systems,” Renew. Sustain. Energy Rev., vol. 16, no. 8, pp. 5802–5819, 2012. doi: 10.1016/j.rser.2012.05.030.
dc.relation[47] A. M. Abed, M. A. Alghoul, K. Sopian, H. S. Majdi, A. N. Al-Shamani, and A. F. Muftah, “Enhancement aspects of single stage absorption cooling cycle: A detailed review,” Renew. Sustain. Energy Rev., vol. 77, no. January, pp. 1010–1045, 2017, doi: 10.1016/j.rser.2016.11.231.
dc.relation[48] H. F. Zúñiga Puebla, “Modelación termodinámica y optimización energética de un ciclo de refrigeración por absorción difusión”,M.S. thesis, Escuela de Ingeniería y ciencias , Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Mexico, 2017.Disponible : https://repositorio.tec.mx/bitstream/handle/11285/629689/Tesis%20Hugo%20Zuniga%20A00818193.pdf?sequence=1&isAllowed=y
dc.relation[49] C. C. Amaris, “Intensification of NH3 Bubble Absorption Process using Advanced Surfaces and Carbon Nanotubes for NH3 /LiNO3 Absorption Chillers”, Ph.D thesis, Universitat Rovira i Virgili, Tarragona, España, 2013.
dc.relation[50] A. Altamirano, N. Le Pierrès, and B. Stutz, “Review of small-capacity single-stage continuous absorption systems operating on binary working fluids for cooling: Theoretical, experimental and commercial cycles”, Int. J. Refrig., vol. 106, pp. 350–373, 2019. doi: 10.1016/j.ijrefrig.2019.06.033.
dc.relation[51] A. I. Papadopoulos, A. Kyriakides, P. Seferlis, and I. Hassan, “Absorption refrigeration processes with organic working fluid mixtures- a review,” Renew. Sustain. Energy Rev., vol. 109, no. January, pp. 239–270, 2019. doi:10.1016/j.rser.2019.04.016.
dc.relation[52] B. Tesha, "Absorption refrigeration system as an integrated condenser cooling unit in a geother- mal power plant", MS. thesis, University of Iceland, Reykjavík ,Iceland, 2009.
dc.relation[53] United States Department of Energy, (2017, May). “Absorption Chillers for CHP Systems”,[Online]. Disponible: https://www.energy.gov/sites/default/files/2017/06/f35/CHP-Absorption%20Chillercompliant.pdf
dc.relation[54] J. D. Marcos, “Prototipo de máquina frigorífica de absorción de LiBr/H2O de doble efecto condensada por aire”,Ph.D thesis, Universidad Carlos III de Madrid, Madrid, España, 2008. Disponible: https://www.sistemamid.com/panel/uploads/biblioteca/1/972/983/986/6202.pdf
dc.relation[55] Absorsistem, “Plantas enfriadoras y calefactoras de agua , por absorción , a llama directa con quemador de gas serie K modelos CH K30 a K100,” 2007. [Online]. Disponible: www.absorsistem.com/productos/yazaki/catalogos
dc.relation[56] A. Shirazi, R. A. Taylor, G. L. Morrison, and S. D. White, “Solar-powered absorption chillers: A comprehensive and critical review”, Energy Convers. Manag., vol. 171, pp. 59–81, Sep. 2018. doi: 10.1016/J.ENCONMAN.2018.05.091.
dc.relation[57] S. S. Alrwashdeh and H. Ammari, “Life cycle cost analysis of two different refrigeration systems powered by solar energy”, Case Stud. Therm. Eng., vol. 16, 2019. doi: 10.1016/j.csite.2019.100559.
dc.relation[58] H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, and S. A. Tassou, “Waste heat recovery technologies and applications,” Therm. Sci. Eng. Prog., vol. 6, pp. 268–289, Jun. 2018. doi: 10.1016/J.TSEP.2018.04.017.
dc.relation[59] K. Ravi Kumar, N. V. V. Krishna Chaitanya, and N. Sendhil Kumar, “Solar thermal energy technologies and its applications for process heating and power generation – A review,” Journal of Cleaner Production, vol. 282. Elsevier Ltd, , Feb. 2021. doi:10.1016/j.jclepro.2020.125296.
dc.relation[60] G. A. Florides, S. A. Kalogirou, S. A. Tassou, and L. C. Wrobel, “Modelling and simulation of an absorption solar cooling system for Cyprus,” Sol. Energy, vol. 72, no. 1, pp. 43–51, 2002. doi: 10.1016/S0038-092X(01)00081-0.
dc.relation[61] A. Dispenza, V. La Rocca, A. Messineo, M. Morale, and D. Panno, “Absorption equipment for energy savings: A case study in Sicily,” Sustain. Energy Technol. Assessments, vol. 3, pp. 17–26, Sep. 2013. doi: 10.1016/j.seta.2013.05.002.
dc.relation[62] A. Shafieian and M. Khiadani, “A multipurpose desalination, cooling, and airconditioning system powered by waste heat recovery from diesel exhaust fumes and cooling water,” Case Stud. Therm. Eng., vol. 21, Oct. 2020. doi:10.1016/J.CSITE.2020.100702.
dc.relation[63] M. Balghouthi, M. H. Chahbani, and A. Guizani, “Feasibility of solar absorption air conditioning in Tunisia,” Build. Environ., vol. 43, no. 9, pp. 1459–1470, Sep. 2008. doi: 10.1016/J.BUILDENV.2007.08.003.
dc.relation[64] F. Calise, “Thermoeconomic analysis and optimization of high efficiency solar heating and cooling systems for different Italian school buildings and climates,” Energy Build., vol. 42, no. 7, pp. 992–1003, Jul. 2010. doi: 10.1016/j.enbuild.2010.01.011.
dc.relation[65] R. Gomri, “Simulation study on the performance of solar/natural gas absorption cooling chillers,” Energy Convers. Manag., vol. 65, pp. 675–681, 2013. doi:10.1016/j.enconman.2011.10.030.
dc.relation[66] A. Lubis et al., “Solar-assisted single-double-effect absorption chiller for use in Asian tropical climates,” Renew. Energy, vol. 99, pp. 825–835, Dec. 2016. doi:10.1016/j.renene.2016.07.055.
dc.relation[67] M. I. Alhamid et al., “Operation strategy of a solar-gas fired single/double effect absorption chiller for space cooling in Indonesia,” Appl. Therm. Eng., vol. 178, Sep. 2020. doi: 10.1016/j.applthermaleng.2020.115524.
dc.relation[68] A. Saleh and M. Mosa, “Optimization study of a single-effect water–lithium bromide absorption refrigeration system powered by flat-plate collector in hot regions,” Energy Convers. Manag., vol. 87, pp. 29–36, Nov. 2014. doi:10.1016/J.ENCONMAN.2014.06.098.
dc.relation[69] A. Al-Falahi, F. Alobaid, and B. Epple, “Design and thermo-economic comparisons of large scale solar absorption air conditioning cycles,” Case Stud. Therm. Eng., vol. 22, Dec. 2020. doi: 10.1016/j.csite.2020.100763.
dc.relation[70] E. Bellos and C. Tzivanidis, “Energetic and financial analysis of solar cooling systems with single effect absorption chiller in various climates,” Appl. Therm. Eng., vol. 126, pp. 809–821, 2017, doi: 10.1016/j.applthermaleng.2017.08.005.
dc.relation[71] F. A. Ghaith and H. ul H. Razzaq, “Performance of solar powered cooling system using Parabolic Trough Collector in UAE,” Sustain. Energy Technol. Assessments, vol. 23, pp. 21–32, Oct. 2017, doi: 10.1016/j.seta.2017.08.005.
dc.relation[72] R. Narayanan, G. K. Harilal, and S. Golder, “Feasibility study on the solar absorption cooling system for a residential complex in the Australian subtropical region,” Case Stud. Therm. Eng., vol. 27, Oct. 2021. doi: 10.1016/J.CSITE.2021.101202.
dc.relation[73] A. Arabkoohsar and G. B. Andresen, “Supporting district heating and cooling networks with a bifunctional solar assisted absorption chiller,” Energy Convers. Manag., vol. 148, pp. 184–196, 2017, doi: 10.1016/j.enconman.2017.06.004.
dc.relation[74] J. Labus, “Modelling of small capacity absorption chillers driven by solar thermal energy or waste heat”, Ph.D thesis, Universitat Rovira i Virgili, Tarragona, España, 2011.Disponible:https://www.tesisenred.net/bitstream/handle/10803/51878/PhD%20 thesis%20Jlabus.pdf?sequence=1
dc.relation[75] Y. Lu, A. P. Roskilly, and C. Ma, “A techno-economic case study using heat driven absorption refrigeration technology in UK industry”, in Energy Procedia, Windsor, UK, 2017, vol. 123, pp. 173–179,. doi: 10.1016/j.egypro.2017.07.254.
dc.relation[76] K. Talukdar and T. K. Gogoi, “Exergy analysis of a combined vapor power cycle and boiler flue gas driven double effect water-LiBr absorption refrigeration system,” Energy Convers. Manag., vol. 108, pp. 468–477, 2016. doi:10.1016/j.enconman.2015.11.020.
dc.relation[77] F. Assilzadeh, S. A. Kalogirou, Y. Ali, and K. Sopian, “Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors,” Renew. Energy, vol. 30, no. 8, pp. 1143–1159, 2005. doi: 10.1016/j.renene.2004.09.017.
dc.relation[78] E. Bellos, C. Tzivanidis, C. Symeou, and K. A. Antonopoulos, “Energetic, exergetic and financial evaluation of a solar driven absorption chiller – A dynamic approach,” Energy Convers. Manag., vol. 137, pp. 34–48, 2017. doi:10.1016/j.enconman.2017.01.041.
dc.relation[79] C. S. Fernández and E. A. Calvo, “Capítulo 1: Introducción al mantenimiento”, en Técnicas de mantenimiento en instalaciones mineras, Esc. POLITÉCNICA Ing. MINAS Y ENERGÍA, 2018, pp. 1–21.Disponible: https://ocw.unican.es/pluginfile.php/2489/course/section/2495/Mantenimiento_1.pdf
dc.relation[80] Iec, “Dependability management-Part 3-1: Application guide-Analysis techniques for dependability-Guide on methodology Gestion de la sûreté de fonctionnement-Partie 3-1: Guide d’application-Techniques d’analyse de la sûreté de fonctionnement-Guide méthodologique,” 2003. Accessed: May 08, 2020. [Online]. Disponible: www.iec.ch.
dc.relation[81] E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, and K. H. Kim, “Solar energy: Potential and future prospects,” Renewable and Sustainable Energy Reviews, vol. 82. pp. 894–900, 2018. doi: 10.1016/j.rser.2017.09.094.
dc.relation[82] Miguel Lozano, “Colectores solares térmicos”, Universidad de Zaragoza, Zaragoza, España, 2019, pp.1-62. . Disponible: https://www.researchgate.net/publication/338254329_COLECTORES_SOLARES_TERMICOS.
dc.relation[83] S. A. Kalogirou, “Solar thermal collectors and applications,” Progress in Energy and Combustion Science, vol. 30, no. 3, pp. 231–295, Jan. 2004. doi:10.1016/j.pecs.2004.02.001.
dc.relation[84] M. Mittermaier and F. Ziegler, “Theoretical evaluation of absorption and desorption processes under typical conditions for chillers and heat transformers,” Int. J. Refrig., vol. 59, pp. 91–101, 2015. doi: 10.1016/j.ijrefrig.2015.07.015.
dc.relation[85] P. Srikhirin, S. Aphornratana, and S. Chungpaibulpatana, “A review of absorption refrigeration technologies,” Renew. Sustain. Energy Rev., vol. 5, no. 4, pp. 343–372, 2000. doi: 10.1016/S1364-0321(01)00003-X.
dc.relation[86] C. Amaris, M. Bourouis, and M. Vallès, “Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber,” Energy, vol. 68, pp. 519–528, Apr. 2014. doi:10.1016/j.energy.2014.02.039.
dc.relation[87] Y. T. Kang, A. Akisawa, and T. Kashiwagi, “Analytical investigation of two different absorption modes: falling film and bubble types,” Int. J. Refrig., vol. 23, pp. 430–443, 2000.
dc.relation[88] X. Wu, S. Xu, and M. Jiang, “Development of bubble absorption refrigeration technology: A review,” Renew. Sustain. Energy Rev., vol. 82, pp. 3468–3482, Feb. 2018. doi: 10.1016/J.RSER.2017.10.109.
dc.relation[89] A. M. L. Sández, “Modelización de un absorbedor de burbujas de geometría cilíndrica utilizando la disolución amoniaco-nitrato de litio,” Proyecto fin de carrera Ingeniería Industrial, Departamento de Ingeniería Térmica y de Fluidos, Universidad Carlos III de Madrid, Madrid, España, 2011. Disponible: https://e-archivo.uc3m.es/handle/10016/11661
dc.relation[90] M. A. Johnson, J. De La Peña, and R. B. Mesler, “Bubble shapes in nucleate boiling,” AIChE J., vol. 12, no. 2, pp. 344–348, 1966. doi: 10.1002/aic.690120225.
dc.relation[91] Y. T. Kang, T. Nagano, and T. Kashiwagi, “Visualization of bubble behavior and bubble diameter correlation for NH3 ± H2O bubble absorption  lation entre le comportement de la bulle et Etude de la corre Á tre lors d ’ absorption NH 3 -H 2 O : de son diame  thode visuelle me,” Int. J. Refrig., vol. 25, pp. 127–135, 2002.
dc.relation[92] T. L. Merrill and H. Pérez-Blanco, “Combined heat and mass transfer during bubble absorption in binary solutions,” Int. J. Heat Mass Transf., vol. 40, no. 3, pp. 589–603, Feb. 1997. doi: 10.1016/0017-9310(96)00118-4.
dc.relation[93] K. Terasaka, J. Oka, and H. Tsuge, “Ammonia absorption from a bubble expanding at a submerged orifice into water,” Chem. Eng. Sci., vol. 57, no. 18, pp. 3757–3765, Sep. 2002. doi: 10.1016/S0009-2509(02)00308-1.
dc.relation[94] T. Elperin and A. Fominykh, “Four stages of the simultaneous mass and heat transfer during bubble formation and rise in a bubbly absorber,” Chem. Eng. Sci., vol. 58, no. 15, pp. 3555–3564, Aug. 2003. doi: 10.1016/S0009-2509(03)00192-1.
dc.relation[95] M. D. Staicovici, “A non-equilibrium phenomenological theory of the mass and heat transfer in physical and chemical interactions: Part II — modeling of the NH3/H2O bubble absorption, analytical study of absorption and experiments,” Int. J. Heat Mass Transf., vol. 43, no. 22, pp. 4175–4188, Nov. 2000, doi: 10.1016/S0017-9310(00)00030-2.
dc.relation[96] M. D. Staicovici, “A non-equilibrium phenomenological theory of the mass and heat transfer in physical and chemical interactions: Part I — application to NH3/H2O and other working systems,” Int. J. Heat Mass Transf., vol. 43, no. 22, pp. 4153–4173, Nov. 2000, doi: 10.1016/S0017-9310(00)00029-6.
dc.relation[97] M. Suresh and A. Mani, “Heat and mass transfer studies on R134a bubble absorber in R134a/DMF solution based on phenomenological theory,” Int. J. Heat Mass Transf., vol. 53, no. 13–14, pp. 2813–2825, 2010, doi:10.1016/j.ijheatmasstransfer.2010.02.016.
dc.relation[98] M. K. Aggarwal and R. S. Agarwal, “Thermodynamic properties of lithium nitrate‐ammonia mixtures,” Int. J. Energy Res., vol. 10, no. 1, pp. 59–68, 1986, doi:10.1002/er.4440100107.
dc.relation[99] A. A. S. Lima, A. A. V. Ochoa, J. Â. P. Da Costa, C. A. C. Dos Santos, M. V. F. Lima, and F. D. De Menezes, “Energetic analysis of an absorption chiller using NH3/LiNO3 as an alternative working fluid,” Brazilian J. Chem. Eng., vol. 36, no. 2, pp. 1061–1073, Sep. 2019, doi: 10.1590/0104-6632.20190362s20180473.
dc.relation[100] J. M. Abdulateef, K. Sopian, and M. A. Alghoul, “Optimum design for solar absorption refrigeration systems and comparison of the performances using ammoniawater, ammonia-lithium nitrate and ammonia-sodium thiocyanate solutions,” Int. J. Mech. Mater. Eng., vol. 3, no. 1, pp. 17–24, 2008.
dc.relation[101] R. Ayala, J. L. Frías, L. Lam, C. L. Heard, and F. A. Holland, “Experimental assessment of an ammonia/lithium nitrate absorption cooler operated on low temperature geothermal energy,” Heat Recover. Syst. CHP, vol. 14, no. 4, pp. 437–446, 1994, doi: 10.1016/0890-4332(94)90047-7.
dc.relation[102] C. Amaris, M. Bourouis, M. Vallès, D. Salavera, and A. Coronas, “Thermophysical properties and heat and mass transfer of new working fluids in plate heat exchangers for absorption refrigeration systems,” Heat Transf. Eng., vol. 36, no. 4, pp. 388–395, 2015, doi: 10.1080/01457632.2014.923983.
dc.relation[103] C. A. Infante Ferreira, “Combined momentum, heat and mass transfer in vertical slug flow absorbers,” Int. J. Refrig., vol. 8, no. 6, pp. 326–334, 1985.
dc.relation[104] J. Cerezo, R. Best, and R. J. Romero, “A study of a bubble absorber using a plate heat exchanger with NH3/H2O, NH3/LiNO3 and NH3/NaSCN,” Appl. Therm. Eng., vol. 31, no. 11–12, pp. 1869–1876, 2011, doi: 10.1016/j.applthermaleng.2011.02.032.
dc.relation[105] C. Amaris, M. E. Alvarez, M. Vallès, and M. Bourouis, “Performance assessment of an NH3/LiNO3 bubble plate absorber applying a semi-empirical model and artificial neural networks,” Energies, vol. 13, no. 17, 2020, doi: 10.3390/en13174313.
dc.relation[106] F. Asfand, Y. Stiriba, and M. Bourouis, “CFD simulation to investigate heat and mass transfer processes in a membrane-based absorber for water-LiBr absorption cooling systems,” Energy, vol. 91, no. 2, 2015, doi: 10.1016/j.energy.2015.08.018.
dc.relation[107] F. Asfand, Y. Stiriba, and M. Bourouis, “Performance evaluation of membrane-based absorbers employing H2O/(LiBr + LiI + LiNO3 + LiCl) and H2O/(LiNO3 + KNO3 + NaNO3) as working pairs in absorption cooling systems,” Energy, 2016, doi: 10.1016/j.energy.2016.08.103.
dc.relation[108] S. M. Hosseinnia, M. Naghashzadegan, and R. Kouhikamali, “CFD simulation of adiabatic water vapor absorption in large drops of water-LiBr solution,” Appl. Therm. Eng., vol. 102, pp. 17–29, 2016, doi: 10.1016/j.applthermaleng.2016.03.144.
dc.relation[109] S. M. Hosseinnia, M. Naghashzadegan, and R. Kouhikamali, “CFD simulation of water vapor absorption in laminar falling film solution of water-LiBr ─ Drop and jet modes,” Appl. Therm. Eng., vol. 115, pp. 860–873, 2017, doi:10.1016/j.applthermaleng.2017.01.022.
dc.relation[110] S. K. Panda and A. Mani, “CFD heat and mass transfer studies in a R134a-DMF bubble absorber with swirl flow entry of R134a vapour,” Int. Compress. Eng. Refrig. Air Cond. High Perform. Build. Conf., no. 1995, pp. 1–10, 2016.
dc.relation[111] A. A. S. Lima, A. A. V Ochoa, J. A. P. Da Costa, and J. R. Henríquez, “CFD simulation of heat and mass transfer in an absorber that uses the pair ammonia/water as a working fluid,” Int. J. Refrig., vol. 98, pp. 514–525, 2019, doi:https://doi.org/10.1016/j.ijrefrig.2018.11.010.
dc.relation[112] Y. T. Kang, T. Kashiwagi, and R. N. Christensen, “Ammonia-water bubble absorber with a plate heat exchanger,” in ASHRAE Transactions, vol. 104, no. Pt 1B, pp. 1565– 1575, 1998.
dc.relation[113] J. Cerezo, “Estudio del proceso de absorción con amoníaco-agua en intercambiadores de placas para equipos de refrigeración por absorción,” Doctoral thesis, Universitat Rovira i Virgili, España, 2006.
dc.relation[114] IDEAM, “Boletín Climatológico Mensual”, IDEAM, Colombia, Tech. Rep. 2020. Disponible: http://www.ideam.gov.co/web/tiempo-y-clima/climatologico-mensual (accessed May 25, 2020).
dc.relation[115] ICSC, “El comercio florece en Barranquilla | ICSC: International Council of Shopping Centers,” El comercio florece en Barranquilla | ICSC: International Council of Shopping Centers, 2019. https://www.icsc.com/news-and-views/sct-iberoamerica/elcomercio-florece-en-barranquilla-colombia (accessed Jun. 23, 2020).
dc.relation[116] Wikipedia, “Anexo:Centros comerciales de Barranquilla - Wikipedia, la enciclopedia libre”, Centros comerciales de Barranquilla, 2020. https://es.wikipedia.org/wiki/Anexo:Centros_comerciales_de_Barranquilla (accessed Jun. 23, 2020).
dc.relation[117] Fluke Corporation, “Fluke 434/435/437”, ,Abril 2007.[Online] Disponible: https://www.fluke.com/es-co/producto/comprobacion-electrica/calidad-electrica/434-435
dc.relation[118] S. Libotean, A. Martín, D. Salavera, M. Valles, X. Esteve, and A. Coronas, “Densities, viscosities, and heat capacities of ammonia + lithium nitrate and ammonia + lithiumnitrate + water solutions between (293.15 and 353.15) K,” J. Chem. Eng. Data, vol. 53, no. 10, pp. 2383–2388, 2008, doi: 10.1021/je8003035.
dc.relation[119] S. Libotean, D. Salavera, M. Valles, X. Esteve, and A. Coronas, “Vapor-liquidequilibrium of ammonia + lithium nitrate + water and ammonia + lithium nitrate solutions from (293.15 to 353.15) K,” J. Chem. Eng. Data, vol. 52, no. 3, pp. 1050–1055, 2007, doi: 10.1021/je7000045.
dc.relation[120] Y. Cuenca, D. Salavera, A. Vernet, A. S. Teja, and M. Vallès, “Thermal conductivity of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions over a wide range of concentrations and temperatures,” Int. J. Refrig., vol. 38, no. 1, pp. 333– 340, 2014, doi: 10.1016/j.ijrefrig.2013.08.010.
dc.relation[121] W. Haltenberger, “Enthalpy-Concentration Charts from Vapor Pressure Data,” Ind. Eng. Chem., vol. 31, no. 6, pp. 783–786, 1939, doi: 10.1021/ie50354a032.
dc.relation[122] L. A. McNeely, “Thermodynamic properties of aqueous solutions of lithium bromide,” ASHRAE Trans., vol. 85, no. 1, pp. 413–434, 1979.
dc.relation[123] Comisión del Cambio Climático, “Guía práctica para el cálculo de emisiones de gases de efecto invernadero (GEI)”, Generalitat de Catalunya Comisión Interdepartamental del Cambio Climático, Catalunya, 2011. Accessed: Dec. 02, 2020. [Online]. Disponible:http://www.caib.es/sacmicrofront/archivopub.do?ctrl=MCRST234ZI97531&id=97531.
dc.relation[124] R. Rodden, “Análisis del Costo del Ciclo de Vida: Una herramienta para evaluar mejor las inversiones y decisiones técnicas en pavimentación”, American Concrete Pavement Association, Estados Unidos de América, Tech. Rep. , 2012. Disponible: https://docplayer.es/14370220-Analisis-del-costo-del-ciclo-de-vida-una-herramienta-paraevaluar-mejor-las-inversiones-y-decisiones-tecnicas-en-pavimentacion-boletin-tecnico.html
dc.relation[125] A. Shirazi, R. A. Taylor, S. D. White, and G. L. Morrison, “Transient simulation and parametric study of solar-assisted heating and cooling absorption systems: An energetic, economic and environmental (3E) assessment,” Renew. Energy, vol. 86, pp. 955–971, Feb. 2016, doi: 10.1016/j.renene.2015.09.014.
dc.relation[126] U. Eicker and D. Pietruschka, “Optimization and economics of solar cooling systems,” Adv. Build. Energy Res., vol. 3, no. 1, pp. 45–81, 2009, doi: 10.3763/aber.2009.0303.
dc.relation[127] G. Reniers, L. Talarico, and N. Paltrinieri, “Cost-Benefit analysis of safety measures,” Dynamic Risk Analysis in the Chemical and Petroleum Industry: Evolution and Interaction with Parallel Disciplines in the Perspective of Industrial Application, Oxford, United Kingdom: Elsevier Inc., 2016, pp. 195–205.
dc.relation[128] M. Ebrahimi and A. Keshavarz, “CCHP Evaluation Criteria,” Combined Cooling, Heating and Power, pp. 93–102, 2015, doi: 10.1016/B978-0-08-099985-2.00003-2
dc.relation[129] C. Amaris, M. Bourouis, and M. Vallès, “Effect of advanced surfaces on the ammonia absorption process with NH3/LiNO3 in a tubular bubble absorber”, Int. J. Heat Mass Transf., vol. 72, 2014, doi: 10.1016/j.ijheatmasstransfer.2014.01.031.
dc.relation[130] ANSYS, “ANSYS Fluent Theory Guide”, ANSYS, vol. 1. November. Nueva York, Estados Unidos de América, SAS IP, Nov. 2013, pp.1-814.
dc.relation[131] Absorsistem, “Plantas enfriadoras de agua por ciclo de absorción, accionadas por agua caliente”, Absorsistem, España, Tech. Rep., 2014.
dc.relation[132] M. F. Elberry, A. A. Elsayed, M. A. Teamah, A. A. Abdel-Rahman, and A. F. Elsafty, “Performance improvement of power plants using absorption cooling system,” Alexandria Eng. J., vol. 57, no. 4, pp. 2679–2686, Dec. 2018, doi:10.1016/j.aej.2017.10.004.
dc.relation[133] Z. Khan and Z. A. Khan, “Thermodynamic performance of a novel shell-and-tube heat exchanger incorporating paraffin as thermal storage solution for domestic and commercial applications,” Appl. Therm. Eng., vol. 160, 2019, doi: 10.1016/j.applthermaleng.2019.114007.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectRefrigeración por absorción
dc.subjectCentros comerciales
dc.subjectColectores solares térmicos
dc.subjectGas natural
dc.subjectFluidos de trabajo
dc.subjectAbsorption refrigeration
dc.subjectShopping malls
dc.subjectSolar thermal collectors
dc.subjectNatural gas
dc.subjectWorking fluids
dc.titlePotencial de la refrigeración por absorción activado con gas natural y energía solar en centros comerciales de Barranquilla
dc.typeTrabajo de grado - Doctorado
dc.typehttp://purl.org/coar/resource_type/c_db06
dc.typeText
dc.typeinfo:eu-repo/semantics/doctoralThesis
dc.typehttp://purl.org/redcol/resource_type/TD
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.coverageBarranquilla


Este ítem pertenece a la siguiente institución