dc.creator | Dotto, Guilherme Luiz | |
dc.creator | Vieillard, Julien | |
dc.creator | Pinto, Diana | |
dc.creator | Lütke, Sabrina F. | |
dc.creator | Silva Oliveira, Luis Felipe | |
dc.creator | dos Reis, Glaydson S. | |
dc.creator | Lima, Éder C. | |
dc.creator | Dison S.P., Franco | |
dc.date | 2023-09-11T18:59:00Z | |
dc.date | 2025 | |
dc.date | 2023-09-11T18:59:00Z | |
dc.date | 2023 | |
dc.date.accessioned | 2023-10-03T19:55:48Z | |
dc.date.available | 2023-10-03T19:55:48Z | |
dc.identifier | Guilherme L. Dotto, Julien Vieillard, Diana Pinto, Sabrina F. Lütke, Luis F.O. Silva, Glaydson S. dos Reis, Éder C. Lima, Dison S.P. Franco, Selective adsorption of gadolinium from real leachate using a natural bentonite clay, Journal of Environmental Chemical Engineering, Volume 11, Issue 3, 2023, 109748, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2023.109748 | |
dc.identifier | https://hdl.handle.net/11323/10472 | |
dc.identifier | 10.1016/j.jece.2023.109748 | |
dc.identifier | 2213-3437 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9173380 | |
dc.description | This article investigated the recovery of Gd3+ from real leachate of phosphogypsum (PG) using natural bentonite clay. Firstly, a detailed adsorption study was performed using synthetic Gd3+ solutions. Then, it was investigated the clay performance in the real PG leachate. The characterization results indicate classical bentonite characteristics, such as rugosity and an SBET 91.3 m² g−1, with meso (Dp =3.82 nm) and macroporous (Dp =52.6 nm). In addition, it was identified that the major functional groups are hydroxyl and silicate, with the presence of organic matter. The initial pH solution effect indicates that the optimum removal of Gd3+ is at pH (6), attributing to the pHpzc being at 5.75 and the negatively charged surface above the pHpzc. The Avrami fractional order model was the most suitable for describing the experimental kinetic data. The Langmuir was the proper model for describing the adsorption isotherms, indicating that the Gd3+ forms a monolayer at the surface of the bentonite. The maximum adsorption capacity at pH 6.0 was 121.5 mg g−1. The thermodynamic parameters indicate that the adsorption is spontaneous, with a standard enthalpy change of − 92.30 kJ mol−1, indicating an ionic exchange, where the Gd3+ tends to be organized at the surface, according to the standard entropy change of − 206.0 J K−1 mol−1. The fixed bed adsorption test showed that Gd3+ could be adsorbed for up to 200 min without regeneration. Regeneration results show that the citric acid is more efficient in desorbing the Gd3+ from the bentonite, reaching up to 8 cycles without efficiency loss. Finally, the bentonite clay could selectively recover Gd3+ from the real PG leachate. | |
dc.format | 9 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Elsevier BV | |
dc.publisher | United Kingdom | |
dc.relation | Journal of Environmental Chemical Engineering | |
dc.relation | [1] W. Ariyani, W. Miyazaki, Y. Tsushima, N. Koibuchi, Gadolinium‑based contrast
agent accelerates the migration of astrocyte via the integrin αvβ3 signaling
pathway, Sci. Rep. 12 (2022) 5850, https://doi.org/10.1038/s41598-022-09882-7. | |
dc.relation | [2] K. Gaalen, C. Quinn, F. Benn, P.E. McHugh, A. Kopp, T.J. Vaughan, Linking the
effect of localised pitting corrosion with mechanical integrity of a rare earth
magnesium alloy for implant use, Bioact. Mater. 21 (2023) 32–43, https://doi.org/
10.1016/j.bioactmat.2022.08.004. | |
dc.relation | [3] B. Shi, X. Zhang, W. Li, N. Liang, X. Hu, J. Xiao, D. Wang, X. Zou, J. Shi, An
intrinsic dual-emitting fluorescence sensing toward tetracycline with a selfcalibration model based on luminescent lanthanide-functionalized metal-organic
frameworks, Food Chem. 400 (2023), 133995, https://doi.org/10.1016/j.
foodchem.2022.133995. | |
dc.relation | [4] V. Balaram, Rare earth elements: a review of applications, occurrence, exploration,
analysis, recycling, and environmental impact, Geosci. Front. 10 (2019)
1285–1303, https://doi.org/10.1016/j.gsf.2018.12.005. | |
dc.relation | [5] M. Yousaf, M.A. MAKY, A. Shah, Y. Noor, M.N. Lu, N. Akhtar, E. Mushtaq, S. Hu,
B. Yan, Zhu, Enhanced ORR catalytic activity of rare earth-doped Gd oxide ions in a
CoFe2O4 cathode for low-temperature solid oxide fuel cells (LT-SOFCs, Ceram. Int.
48 (2022) 28142–28153, https://doi.org/10.1016/j.ceramint.2022.06.119. | |
dc.relation | [6] S.F. Lütke, M.L.S. Oliveira, S.R. Waechter, L.F.O. Silva, T.R.S. Cadaval Jr., F.
A. Duarte, G.L. Dotto, Leaching of rare earth elements from phosphogypsum,
Chemosphere 301 (2022), 134661, https://doi.org/10.1016/j.
chemosphere.2022.134661. | |
dc.relation | [7] S. Li, M. Malik, G. Azimi, Extraction of rare earth elements from phosphogypsum
using mineral acids: process development and mechanistic investigation, Ind. Eng.
Chem. Res. 61 (2022) 102–114, https://doi.org/10.1021/acs.iecr.1c03576. | |
dc.relation | [8] M.S. Gasser, Z.H. Ismail, E.M. Abu Elgoud, F. Abdel Hai, I.O. Ali, H. F. Aly, Alkali
Treat. leaching rare earth Elem. phosphogypsum Fertil.: Insight Addit. Resour.
Valuab. Compon. BMC Chem. 16 (2022) 51, https://doi.org/10.1186/s13065-022-
00845-7. | |
dc.relation | [9] Y. El Ouardi, M. Lamsayah, S. Butylina, S. Geng, M. Esmaeili, A. Give, E.S.
M. Mouele, S. Virolainen, S. El Barkany, A. Ouammou, E. Repo, K. Laatikainen
Sustainable composite material based on glutenin biopolymeric clay for efficient
separation of rare earth elements, hem. Eng. J. 440 (2022), 135959, https://doi.
org/10.1016/j.cej.2022.135959. | |
dc.relation | [10] W.C. Wilfong, T. Ji, Y. Duan, F. Shi, Q. Wang, M.L. Mc, Gray, Critical review of
functionalized silica sorbent strategies for selective extraction of rare earth
elements from acid mine drainage, J. Hazard. Mater. 424 (2022), 127625, https://
doi.org/10.1016/j.jhazmat.2021.127625. | |
dc.relation | [11] G. Estrade, E. Marquis, M. Smith, K. Goodenough, P. Nason, REE concentration
processes in ion adsorption deposits: evidence from the Ambohimirahavavy
alkaline complex in Madagascar, Ore Geol. Rev. 112 (2019), 103027, https://doi.
org/10.1016/j.oregeorev.2019.103027. | |
dc.relation | [12] Y. Huang, H. He, X. Liang, Z. Bao, W. Tan, L. Ma, J. Zhu, J. Huang, H. Wang,
Characteristics and genesis of ion adsorption type REE deposits in the weathering
crusts of metamorphic rocks in Ningdu, Ganzhou, China, Ore Geol. Rev. 135
(2021), 104173, https://doi.org/10.1016/j.oregeorev.2021.104173. | |
dc.relation | [13] C.L. Liang, J.L. Shen, Removal of yttrium from rare-earth wastewater by Serratia
marcescens: biosorption optimization and mechanisms studies, Sci. Rep. 12 (2022)
4861, https://doi.org/10.1038/s41598-022-08542-0. | |
dc.relation | [14] I.V. Pylypchuk, D. Kołodynska, ´ M. Kozioł, P.P. Gorbyk, Gd-DTPA adsorption on
chitosan/magnetite nanocomposites, Nanoscale Res. Lett. 11 (2016) 168, https://
doi.org/10.1186/s11671-016-1363-3. | |
dc.relation | [15] G.S. dos Reis, D. Pinto, E.C. Lima, S. Knani, A. Grimm, L.F.O. Silva, T.R.
S. Cadaval Jr, G.L. Dotto, Lanthanum uptake from water using chitosan with
different configurations, React. Funct. Polym. 180 (2022), 105395, https://doi.
org/10.1016/j.reactfunctpolym.2022.105395. | |
dc.relation | [16] J. Cui, Q. Wang, J. Gao, Y. Guo, F. Cheng, The selective adsorption of rare earth
elements by modified coal fly ash-based SBA-15, Chin. J. Chem. Eng. 47 (2021)
155–164, https://doi.org/10.1016/j.cjche.2021.07.033. | |
dc.relation | [17] Z. Fang, H. Suhua, l Xu, F. Jian, L. Qi, W. Zhiwei, L. Chuanchang, X. Yuanlai,
Adsorption kinetics and thermodynamics of rare earth on montmorillonite
modified by sulfuric acid, Colloids Surf. A Physicochem. Eng. Asp. 627 (2021),
127063, https://doi.org/10.1016/j.colsurfa.2021.127063. | |
dc.relation | [18] B. Ji, W. Zhang, Adsorption of cerium (III) by zeolites synthesized from kaolinite
after rare earth elements (REEs) recovery, Chemosphere 303 (2022), 134941,
https://doi.org/10.1016/j.chemosphere.2022.134941. | |
dc.relation | [19] T. Kegl, A. Kosak, A. Lobnik, Z. Novak, A.K.C. Kralj, I. Ban, Adsorption of rare earth
metals from wastewater by nanomaterials: a review, J. Hazard. Mater. 386 (2020),
121632, https://doi.org/10.1016/j.jhazmat.2019.121632. | |
dc.relation | [20] J. Xiao, B. Li, R. Qiang, H. Qiu, J. Chen, Highly selective adsorption of rare earth
elements by honeycomb-shaped covalent organic frameworks synthesized in deep
eutectic solvents, Environ. Res. 214 (2022), 113977, https://doi.org/10.1016/j.
envres.2022.113977. | |
dc.relation | [21] J. Starý, J. Jirasek, F. Pticen, J. Zahradník, M. Sivek, Review of production,
reserves, and processing of clays (including bentonite) in the Czech Republic, Appl.
Clay Sci. 205 (2021), 106049, https://doi.org/10.1016/j.clay.2021.106049. | |
dc.relation | [22] Y. Li, J. Liu, Y. Wang, X. Tang, J. Xu, X. Liu, Contribution of components in natural
soil to Cd and Pb competitive adsorption: Semi-quantitative to quantitative
analysis, J. Hazard. Mater. 441 (2023), 129883, https://doi.org/10.1016/j.
jhazmat.2022.129883. | |
dc.relation | [23] P.H. Chang, J. Guo, J. Li, Z. Li, X. Li, Seizing forbidden drug ranitidine by illite and
the adsorption mechanism study, Colloids Surf. A: Physicochem. Eng. Asp. 639
(2022), 128395, https://doi.org/10.1016/j.colsurfa.2022.128395. | |
dc.relation | [24] D.B. França, L.S. Oliveira, F.G. Nunes Filho, E.C. Silva Filho, J.A. Osajima,
M. Jaber, M.G. Fonseca, The versatility of montmorillonite in water remediation
using adsorption: Current studies and challenges in drug removal, J. Environ.
Chem. Eng. 10 (2022), 107341, https://doi.org/10.1016/j.jece.2022.107341. | |
dc.relation | [25] C. Cristiani, E.M. Iannicelli-Zubiani, M. Bellotto, Gi. Dotelli, P.G. Stampino, S.
Latorrata, G. Ramis, E. Finocchio Capture Mechanism of La and Cu Ions in Mixed
Solutions by Clay and Organoclay. Industrial Engineering and Chemical Research,
60 (2021) 6803− 6813. Doi:10.1021/acs.iecr.0c05333. | |
dc.relation | [26] A. Alshameri, H. He, C. Xin, J. Zhu, W. Xinghu, R. Zhu, H. Wang, Understanding
the role of natural clay minerals as effective adsorbents and alternative source of
rare earth elements: Adsorption operative parameters, Hydrometallurgy 185
(2019) 149–161, https://doi.org/10.1016/j.hydromet.2019.02.016. | |
dc.relation | [27] P.R. Souza, G.L. Dotto, N.P.G. Salau, Detailed numerical solution of pore volume
and surface diffusion model in adsorption systems, Chem. Eng. Res. Des. 122
(2017) 298–307, https://doi.org/10.1016/j.cherd.2017.04.021. | |
dc.relation | [28] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F.J. Rodriguez-Reinoso, K.
S. Rouquerol, W. Sing, Physisorption of gases, with special reference to the
evaluation of surface area and pore size distribution (IUPAC Technical Report),
Pure Appl. Chem. 87 (2015) 1051–1069. | |
dc.relation | [29] E.C. NFGM Cimirro, M.R. Lima, P.S. Cunha, A. Thue, G.S. Grimm, N. dos Reis, M.
R. Rabiee, F. Saeb, S. Keivanimehr, Habibzadeh. Removal of diphenols using pine
biochar, Kinet., Equilib., Thermodyn., Mech. uptake. J. Mol. Liq. 364 (2022),
119979, https://doi.org/10.1016/j.molliq.2022.119979. | |
dc.relation | [30] P.S. Thue, E.C. Lima, J.M. Sieliechi, C. Saucier, S.L.P. Dias, J.C.P. Vaghetti, F.
S. Rodembusch, F.A. Pavan, Effects of first–row transition metals and impregnation
ratios on the physicochemical properties of microwave-assisted activated carbons
from wood biomass, J. Colloid Interface Sci. 486 (2017) 163–175, https://doi.org/
10.1016/j.jcis.2016.09.0707. | |
dc.relation | [31] A.J.B. Leite, C. Saucier, E.C. Lima, G.S. dos Reis, C.S. Umpierres, B.L. Mello,
M. Shirmardi, S.L.P. Dias, C.H. Sampaio, Activated carbons from avocado seed:
Optimization and application for removal of several emerging organic compounds,
Environ. Sci. Pollut. Res. 25 (2018) 7647–7661, https://doi.org/10.1007/s11356-
017-1105-9. | |
dc.relation | [32] E.C. Lima, M.H. Dehghani, A. Guleria, F. Sher, R.R. Karri, G.L. Dotto, H.N. Tran,
CHAPTER 3 - Adsorption: Fundamental aspects and applications of adsorption for
effluent treatment, in: Hadi Dehghani, M., Karri, R., Lima, E. (Eds.), Green
Technologies for the Defluoridation of Water. Elsevier, 2021, 41–88. Doi:10.1016/
B978–0-323–85768-0.00004-X. | |
dc.relation | [33] E.C. Lima, F. Sher, A. Guleria, M.R. Saeb, I. Anastopoulos, H.N. Tran, A. HosseiniBandegharaei, Is one performing the treatment data of adsorption kinetics
correctly, J. Environ. Chem. Eng. 9 (2021), 104813, https://doi.org/10.1016/j.
jece.2020.104813. | |
dc.relation | [34] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraj´
an, I. Anastopoulos. A
critical review of the estimation of the thermodynamic parameters on adsorption
equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for
calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019)
425–434, https://doi.org/10.1016/j.molliq.2018.10.048. | |
dc.relation | [35] M. Guy, M. Mathieu, I.P. Anastopoulos, M.G. Martínez, F. Rousseau, G.L. Dotto, H.
P. de Oliveira, E.C. Lima, M. Thyrel, S.H. Larsson, G.S. dos Reis, Process parameters
optimization, characterization, and application of KOH-activated Norway spruce
bark graphitic biochars for efficient azo dye adsorption, Molecules 27 (2022) 456,
https://doi.org/10.3390/molecules27020456. | |
dc.relation | [36] M. Gonzalez-Hourcade, G.S. dos Reis, A. Grimm, V.M. Dinh, E.C. Lima, S.
H. Larsson, F.G. Gentili, Microalgae biomass as a sustainable precursor to produce
nitrogen-doped biochar for efficient removal of emerging pollutants from aqueous
media, J. Clean. Prod. 348 (2022), 131280, https://doi.org/10.1016/j.
jclepro.2022.131280. | |
dc.relation | [37] G.S. dos Reis, M. Guy, M. Mathieu, M. Jebrane, E.C. Lima, M. Thyrel, G.L. Dotto, S.
H. Larsson, A comparative study of chemical treatment by MgCl2, ZnSO4, ZnCl2,
and KOH on physicochemical properties and acetaminophen adsorption
performance of biobased porous materials from tree bark residues, Colloids Surf. A
Physicochem. Eng. Asp. (2022) 642, https://doi.org/10.1016/j.
colsurfa.2022.128626. | |
dc.relation | [38] E.H.M. Cavalcante, I.C.M. Candido, H.P. de Oliveira, K.B. Silveira, T. Victor de
Souza Alvares, E.C. Lima, M. Thyrel, S.H. Larsson, G. Simoes Dos Reis, 3-
Aminopropyl-triethoxysilane-functionalized tannin-rich grape biomass for the
adsorption of methyl orange dye: synthesis, characterization, and the adsorption
mechanism, ACS Omega 7 (2022) 18997–19009, https://doi.org/10.1021/
acsomega.2c02101. | |
dc.relation | [39] Z. Xu, J. Cai, B.-C. Pan, Mathematically modeling fixed-bed adsorption in aqueous
systems, J. Zhejiang Univ. Sci. A 14 (2013) 155–176, https://doi.org/10.1631/
jzus.A1300029. | |
dc.relation | [40] P.S. Thue, A.C. Sophia, E.C. Lima, A.G.N. Wamba, W.S. de Alencar, G.S. dos Reis, F.
S. Rodembusch, S.L.P. Dias, Synthesis and characterization of a novel organicinorganic hybrid clay adsorbent for the removal of acid red 1 and acid green 25
from aqueous solutions, J. Clean. Prod. 171 (2018) 30–44, https://doi.org/
10.1016/j.jclepro.2017.09.278. | |
dc.relation | [41] M.E. Mahmoud, G.M. Nabil, S.M.T. Elweshahy, Novel NTiO2-chitosan@NZrO2-
chitosan nanocomposite for effective adsorptive uptake of trivalent gadolinium and
samarium ions from water, Powder Technol. 378 (2021) 246–254. | |
dc.relation | [42] M. Naghizadeh, M.A. Tahera, A.-M. Tamaddon, S. Borandeh, S.S. Abolmaali,
Microextraction of Gadolinium MRI contrast agent using core-shell Fe3O4@SiO2
nanoparticles: optimization of adsorption conditions and in-vitro study, Environ.
Nanotechnol. Monit. Manag. 12 (2019), 100250. | |
dc.relation | [43] B. Xiao, Z. Qingli, Z. Chenyang, L. Jianchu, L. Ke, F. Halliang, L. Yuqin, N. Zihan,
L. Yanwen, J. Yuxin, Glycine functionalized activated carbon derived from navel orange peel for enhancement recovery of Gd(III, ), J. Rare Earths (2021)
1794–1802. | |
dc.relation | [44] J. Cui, Q. Wang, J. Gao, Y. Guo, F. Cheng, The selective adsorption of rare earth
elements by modified coal fly ash based SBA-15, Chin. J. Chem. Eng. 47 (2022)
155–164. | |
dc.relation | [45] E. Liu, X. Lin, D. Zhang, W. Xu, J. Shi, Y. Hong, Ionic imprinted CNTs-chitosan
hybrid sponge with 3D network structure for selective and effective adsorption of
Gd(III), Separ. Purif. Technol. 269 (2021), 118792. | |
dc.relation | [46] W. Chen, L. Wang, M. Zhuo, Y. Liu, Y. Wang, Y. Li, Facile and highly efficient
removal of trace Gd(III) by adsorption of colloidal graphene oxide suspensions
sealed in dialysis bag, J. Hazard. Mater. 279 (2014) 546–553. | |
dc.relation | [47] W. Yin, L. Liu, S. Tang, H. Zhang, X. Pan, Facile synthesis of triazole and
carboxylfunctionalized cellulose-based adsorbent via click chemistry strategy for
efficient Gd(III) removal, Cellulose 26 (2019) 7107–7123. | |
dc.relation | [48] E.L. Liu, X. Lin, D. Zhang, W.B. Xu, J.Y. Shi, Y.Z. Hong, Preparation of an ion
imprinted chitosan-based porous film with an interpenetrating network structure
for efficient selective adsorption of Gd(III), N. J. Chem. 45 (2021) 725–734. | |
dc.relation | [49] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, Potential of
Araucaria angustifolia bark as adsorbent to remove gentian violet dye from
aqueous effluents, Water Sci. Technol. 78 (2018) 1693–1703, https://doi.org/
10.2166/wst.2018.448. | |
dc.relation | [50] J. Ifthikar, I.I. Shahib, L. Sellaoui, A. Jawad, M. Zhao, Z. Chen, Z. Chen, pH tunable
anionic and cationic heavy metal reduction coupled adsorption by thiol crosslinked composite: Physicochemical interpretations and fixed-bed column
mathematical model study, 126041, Chem. Eng. J. 401 (2020), https://doi.org/
10.1016/j.cej.2020.126041. | |
dc.relation | [51] Y.L. de, O. Salomon, ´ J. Georgin, M.S. D.S.P.Franco, P. Netto, Grassi, D.G.A. Piccilli,
M.L.S. Oliveira, G.L. Dotto, Powdered biosorbent from pecan pericarp (Carya
illinoensis) as an efficient material to uptake methyl violet 2B from effluents in
batch and column operations, Adv. Powder Technol. 31 (2020) 2843–2852,
https://doi.org/10.1016/j.apt.2020.05.004. | |
dc.relation | [52] P.T. Hernandes, D.S.P. Franco, J. Georgin, N.P.G. Salau, G.L. Dotto, Investigation of
biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from
an aqueous medium, J. Environ. Chem. Eng. 10 (2022), 107408, https://doi.org/
10.1016/j.jece.2022.107408. | |
dc.relation | 9 | |
dc.relation | 1 | |
dc.relation | 3 | |
dc.relation | 11 | |
dc.rights | © 2023 Elsevier Ltd. All rights reserved. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.source | https://www.sciencedirect.com/science/article/pii/S2213343723004876 | |
dc.subject | Gadolinium | |
dc.subject | Natural clay | |
dc.subject | Selectivity | |
dc.subject | Kinetics | |
dc.subject | Thermodynamics | |
dc.subject | Adsorption | |
dc.title | Selective adsorption of gadolinium from real leachate using a natural bentonite clay | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |