dc.creatorSalcedo, Dixon
dc.creatorCortes, Albeiro
dc.creatorTernera, Yesid
dc.creatorHenríquez, Carlos
dc.creatorMartes, Leidy
dc.date2022-06-24T13:42:46Z
dc.date2022-06-24T13:42:46Z
dc.date2022
dc.date.accessioned2023-10-03T19:55:45Z
dc.date.available2023-10-03T19:55:45Z
dc.identifierSalcedo, D., Cortes, A., Ternera, Y., Henriquez, C., & Martes, L. (2022). Diabetes tracking panel: an on-line information system to registration and management. Bulletin of Electrical Engineering and Informatics, 11(3), 1614-1623. doi:https://doi.org/10.11591/eei.v11i3.3477
dc.identifier2089-3191
dc.identifierhttps://hdl.handle.net/11323/9305
dc.identifierhttps://doi.org/10.11591/eei.v11i3.3477
dc.identifier10.11591/eei.v11i3.3477
dc.identifier2302-9285
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173371
dc.descriptionOnline hospital information systems enable health care providers to ensure information. Although nowadays there are great technological advances; in Colombia, the impact on the health sector has been low. As a result, there is an increasing deficiency in cities with less access to new technologies. Therefore, it is necessary for the government and health care providers to join efforts to expand the use of information technologies in the health area to improve the overall quality of the service provided. Therefore, this project introduces diabetes tracking panel tests system to improve the management process. The development system is based on several Open-Source platforms, such as MySQL, among others. Finally, we found that implemented system can reduce the time management of diabetes tests by the staff medical and assistance care personal.
dc.format10 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherInstitute of Advanced Engineering and Science (IAES)
dc.publisherIndonesia
dc.relationBulletin of Electrical Engineering and Informatics
dc.relation[1]I. Kojta, M. Chacińska, and A. Błachnio-Zabielska, “Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance,” Nutrients 2020, vol. 12, no. 5, p. 1305, May 2020, doi: 10.3390/NU12051305.
dc.relation[2]W. Ling, Y. Huang, Y. M. Huang, R. R. Fan, Y. Sui, and H. L. Zhao, “Global trend of diabetes mortality attributed to vascular complications, 2000–2016,” Cardiovascular Diabetology, vol. 19, no. 1, Dec. 2020, doi: 10.1186/S12933-020-01159-5.
dc.relation[3] K. Nørgaard, “Telemedicine Consultations and Diabetes Technology During COVID-19,” Journal of Diabetes Science and Technology, vol. 14, no. 4, pp. 767–768, Jul. 2020, doi: 10.1177/1932296820929378.
dc.relation[4] Y. Zhou, J. Chi, W. Lv, and Y. Wang, “Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19),” Diabetes/Metabolism Research and Reviews, vol. 37, no. 2, Feb. 2021, doi: 10.1002/DMRR.3377.
dc.relation[5] M. J. Redondo et al., “The clinical consequences of heterogeneity within and between different diabetes types,” Diabetologia, vol. 63, no. 10, pp. 2040–2048, Oct. 2020, doi: 10.1007/S00125-020-05211-7.
dc.relation[6] E. Abuelgasim et al., “Clinical overview of diabetes mellitus as a risk factor for cardiovascular death,” Reviews in Cardiovascular Medicine, vol. 22, no. 2, pp. 301–314, 2021, doi: 10.31083/j.rcm2202038.
dc.relation[7] E. Ahlqvist, R. Prasad, and L. Groop, “Subtypes of type 2 diabetes determined from clinical parameters,” Am Diabetes Assoc, vol. 69, no. 10, pp. 2086–2093, 2020, doi: 10.2337/dbi20-0001.
dc.relation[8] J. Wong and G. Mehta, “Efficacy of depression management in an integrated psychiatric-diabetes education clinic for comorbid depression and diabetes mellitus types 1 and 2,” Canadian Journal of Diabetes, vol. 44, no. 6, pp. 455-460, August 2020, doi: 10.1016/j.jcjd.2020.03.013.
dc.relation[9] C.-H. Tseng, “Metformin and Risk of Malignant Brain Tumors in Patients with Type 2 Diabetes Mellitus,” Biomolecules, vol. 11, pp. 1-14, 2021, doi: 10.3390/biom11081226.
dc.relation[10] O. Rozanska, A. Uruska, and D. Zozulinska-Ziolkiewicz, “Brain-derived neurotrophic factor and diabetes,” International Journal of Molecular Sciences, vol. 21, no. 3, pp. 1-12, 2020, doi: 10.3390/ijms21030841.
dc.relation[11] S. Peric and T. M. Stulnig, “Diabetes and COVID-19: Disease—Management—People,” Wiener Klinische Wochenschrift, vol. 132, no. 13–14, pp. 356–361, Jul. 2020, doi: 10.1007/S00508-020-01672-3.
dc.relation[12] Z. Wu, Y. Tang, and Q. Cheng, “Diabetes increases the mortality of patients with COVID-19: a meta-analysis,” Acta Diabetologica, vol. 58, no. 2, pp. 139–144, Feb. 2021, doi: 10.1007/S00592-020-01546-0.
dc.relation[13] A. Mohammadinejad, M. Heydari, R. Kazemi Oskuee and M. Rezayi, “A Critical Systematic Review of Developing Aptasensors for Diagnosis and Detection of Diabetes Biomarkers,” Critical Reviews in Analytical Chemistry, 2021, pp. 1-23.
dc.relation[14] B. A. Lipsky et al., “Guidelines on the diagnosis and treatment of foot infection in persons with diabetes (IWGDF 2019 update),” Wiley Online Library, vol. 36, no. S1, Mar. 2020, doi: 10.1002/dmrr.3280.
dc.relation[15] A. M. Vaskovsky, M. S. Chvanova and M. B. Rebezov, "Creation of digital twins of neural network technology of personalization of food products for diabetics," 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR), 2020, pp. 251-253, doi: 10.1109/DCNAIR50402.2020.9216776.
dc.relation[16] S. Joachim, P. P. Jayaraman, A. R. M. Forkan, A. Morshed and N. Wickramasinghe, “Design and Development of a Diabetes Self-Management Platform: A Case for Responsible Information System Development,” Hawaii International Conference on System Sciences (HICSS-54), 2021, doi: 10.24251/HICSS.2021.459.
dc.relation[17] A. U. Haq et al., “Intelligent machine learning approach for effective recognition of diabetes in E-healthcare using clinical data,” mdpi.com, vol. 20, 2020, doi: 10.3390/s20092649.
dc.relation[18] D. Ramamoorthy, A. Bai and N. Nagarajan, “A novel hybrid approach for diagnosing diabetes mellitus using farthest first and support vector machine algorithms,” Obesity Medicine, vol. 17, no. 13, Oct. 2019, doi: 10.1016/j.obmed.2019.100152.
dc.relation[19] Md. Maniruzzaman, Md. J. Rahman, B. Ahammed and Md. M. Abedin, “Classification and prediction of diabetes disease using machine learning paradigm,” Health Information Science and Systems, vol. 8, no. 7, Dec. 2020, doi: 10.1007/S13755-019-0095-Z.
dc.relation[20] M. Shuja, S. Mittal and M. Zaman, “Effective prediction of type ii diabetes mellitus using data mining classifiers and SMOTE,” Springer, pp. 195–211, 2020, doi: 10.1007/978-981-15-0222-4_17.
dc.relation[21] T. Nibareke and J. Laassiri, “Using Big Data-machine learning models for diabetes prediction and flight delays analytics,” Journal of Big Data, vol. 7, no. 1, Dec. 2020, doi: 10.1186/S40537-020-00355-0.
dc.relation[22] E. F. Ruiz-Ledesma, R. Palma-Orozco and E. Acosta-Gonzaga, “Framework proposal for adaptive mobile intelligent agents,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 5, pp. 2759–2770, Oct. 2021, doi: 10.11591/eei.v10i5.2841.
dc.relation[23] D. Salcedo, “Design and implementation of an uv radiation monitoring system to the Neiva-Huila municipality,” Journal of Engineering and Applied Sciences, vol. 14, no. 24, pp. 4176-4182, Dec. 2019.
dc.relation[24] D. Suárez, J. Solano, R. B. Martinez, M. A.- CESTA, and undefined 2020, “Sistema Inteligente para para la gestión automática de un generador eléctrico basado en la arquitectura del IoT,” repositorio.cuc.edu.co, 2020, Accessed: Dec. 05, 2021. [Online]. Available: https://repositorio.cuc.edu.co/handle/11323/8721
dc.relation[25] A. C. Cabezas, D. S.-A. J. of, and undefined 2020, “Renal function panel: an information system for results tests management at the Huila department,” repositorio.cuc.edu.co, vol. 15, no. 19, 2020, Accessed: Dec. 05, 2021. [Online]. Available: https://repositorio.cuc.edu.co/handle/11323/7808.
dc.relation[26] A. C. Cabezas, D. Salcedo and I. A. Villa, “Information system to management comprehensive metabolic panel tests in hospitals of Huila-Colombia department,” repositorio.cuc.edu.co, vol. 15, no. 20, pp. 2348-2355, Oct. 2020.
dc.relation[27] Albeiro Cortes, Dixon Salcedo, Yesid Ternera, Carlos Henriquez, and Leidy Martes, “Diabetes Tracking Test System,”, Dec. 01, 2020, Online. [Available]: https://github.com/albecor/Medical_DiabetesTracking
dc.relation1623
dc.relation1614
dc.relation3
dc.relation11
dc.rightsAtribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0)
dc.rightshttps://creativecommons.org/licenses/by-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://beei.org/index.php/EEI/article/view/3477
dc.subjectDiabetes test system
dc.subjectHealth care
dc.subjectInformation system
dc.subjectWeb services
dc.titleDiabetes tracking panel: an on-line information system to registration and management
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución