dc.creatorMaroni, Daniela
dc.creatorTibério Cardoso, Grace
dc.creatorNeckel, Alcindo
dc.creatorStolfo Maculan, Laércio
dc.creatorL.S. Oliveira, Marcos
dc.creatorThaines Bodah, Eliane
dc.creatorWilliam Bodah, Brian
dc.creatorSantosh, M.
dc.date2021-08-02T12:57:19Z
dc.date2021-08-02T12:57:19Z
dc.date2021-06-04
dc.date.accessioned2023-10-03T19:55:24Z
dc.date.available2023-10-03T19:55:24Z
dc.identifierhttps://hdl.handle.net/11323/8499
dc.identifierhttps://doi.org/10.1016/j.jece.2021.105796
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173335
dc.descriptionThe effect of global climate change on the temperature of urban areas has become more pronounced in the past couple decades, impacting population and quality of life. The United Nations (UN), the National Aeronautics and Space Administration (NASA) and the Intergovernmental Panel on Climate Change (IPCC) have emphasized the impact of urban structures on microclimatic. A better understanding of these effects is important to formulate effective strategies that would contribute to address the impacts of increased urban growth. Here we address a case study of the Vila Rodrigues neighborhood, located in Passo Fundo City in southern Brazil to analyze the variations of emissivity, temperature and vegetation of the terrestrial surface, with influence of buildings. We employ Landsat satellite images, and unpublished data provided by the NASA, interpolated and classified in the QGIS software, using Bands 4, 5 and 10, converted to Gray Level (NC). This procedure allowed the spectral radiance of the reflectance temperature to be obtained. The Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) were used, with correction of emissivity and spectral error, in the identification of the surface temperature of different areas in the Villa Rodrigues. The results showed a total variation of 3.86ºC among the sampled points, which is increased by the difference in significance of the thermal balance in urban areas under open sky with buildings. We suggest that green areas and parks with abundant vegetative cover and the application of new building materials in future constructions would help to improve the urban climate, and such regulation of the local temperature on global scale is an effective step towards addressing the adverse effects from climate change.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.relationM. Bonatti, M.A. Lana, L.R. D’agostini, A.C.F. de. Vasconcelos, S. Sieber, L. Eufemia, T. da. Silva-rosa, S.L. Schlindwein Social representations of climate change and climate adaptation plans in southern Brazil: challenges of genuine participation Urban Clim., 29 (2019), Article 100496, 10.1016/j.uclim.2019.100496
dc.relationA. Neckel, J.L. da. Silva, P.P. Saraiva, H.A. Kujawa, J. Araldi, E.P. Paladini Estimation of the economic value of urban parks in Brazil, the case of the City of Passo Fundo J. Clean. Prod., 264 (2020), Article 121369, 10.1016/j.jclepro.2020.121369
dc.relationL.F.O. Silva, D. Pinto, A. Neckel, G.L. Dotto, M.L.S. Oliveira The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil Chemosphere, 251 (2020) (2020), Article 126838, 10.1016/j.chemosphere.2020.126838
dc.relationH. Li, Y. Zhou, G. Jia, K. Zhao, J. Dong Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model Geosci. Front. (2021), Article 101141, 10.1016/j.gsf.2021.101141
dc.relationP.B. Cobbinah Urban resilience in climate change hotspot Land Use Policy, 100 (2021), Article 104948, 10.1016/j.landusepol.2020.104948
dc.relationPBMC, Brazilian Panel on Climate Change, In: Climate Change and Cities: Special Report of the Brazilian (Rio de Janeiro, Brazil), 2016. https://agenciabrasil.ebc.com.br/en/geral/noticia/2017–06/brazils-coastal-cities-more-vulnerable-climate-change.
dc.relationJ.V. de. Oliveira, J.C.P. Cohen, M. Pimentel, H.L.Z. Tourinho, M.A. Lôbo, G. Sodré, A. Abdala Urban climate and environmental perception about climate change in Belém, Pará, Brazil Urban Clim., 31 (2020), Article 100579, 10.1016/j.uclim.2019.100579
dc.relationT.K. Dhar, L. Khirfan A multi-scale and multi-dimensional framework for enhancing the resilience of urban form to climate change Urban Clim., 19 (2017), pp. 72-91, 10.1016/j.uclim.2016.12.004
dc.relationR.M. de. Carvalho, C.F. Szlafsztein Urban vegetation loss and ecosystem services: The influence on climate regulation and noise and air pollution Environ. Pollut., 245 (2019), pp. 844-852, 10.1016/j.envpol.2018.10.114
dc.relationC.M. Nascimento, W..de.S. Mendes, N.E.Q. Silvero, R.R. Poppiel, V.M. Sayão, A.C. Dotto, N.V..dos. Santos, M.T.A. Amorim, J.A.M. Demattê, Soil degradation index developed by multitemporal remote sensing images, climate variables, terrain and soil attributes, J. Environ. Manage. 277 (2021), 111316. https://ezproxy.cuc.edu.co:2067/10.1016/j.jenvman.2020.111316.
dc.relationH. Bherwani, A. Singh, R. Kumar Assessment methods of urban microclimate and its parameters: a critical review to take the research from lab to land Urban Clim., 34 (2020), Article 100690, 10.1016/j.uclim.2020.100690
dc.relationM.E. Gavito, H. Paz, F. Barragán, I. Siddique, F. Arreola-Villa, F. Pineda-García, P. Balvanera Indicators of integrative recovery of vegetation, soil and microclimate in successional fields of a tropical dry forest For. Ecol. Manag., 479 (2021), Article 118526, 10.1016/j.foreco.2020.118526
dc.relationZ.L. Li, B.H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.F. Trigo, J.A. Sobrino Satellite-derived land surface temperature: current status and perspectives Remote Sens. Environ., 131 (2013), pp. 14-37, 10.1016/j.rse.2012.12.008
dc.relationR.S. Chatterjee, N. Singh, S. Thapa, D. Sharma, D. Kumar Retrieval of land surface temperature (LST) from landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs Int. J. Appl. Earth Obs. Geoinf., 58 (2017), pp. 264-277, 10.1016/j.jag.2017.02.017
dc.relationM. Das, A. Das Assessing the relationship between local climatic zones (LCZs) and land surface temperature (LST) – A case study of Sriniketan-Santiniketan Planning Area (SSPA), West Bengal, India Urban Clim., 32 (2020), Article 100591, 10.1016/j.uclim.2020.100591
dc.relationT.D. Mushore, J. Odindi, T. Dube, T.N. Matongera, O. Mutanga Remote sensing applications in monitoring urban growth impacts on in-and-out door thermal conditions: a review R. S. A. S. E., 8 (2017), pp. 83-93, 10.1016/j.rsase.2017.08.001
dc.relationQ. Vanhellemont, Combined land surface emissivity and temperature estimation from Landsat 8 OLI and TIRS. ISPRS J. Photogramm, Remote Sens. 166, 2020, 390–402. https://ezproxy.cuc.edu.co:2067/10.1016/j.isprsjprs.2020.06.007.
dc.relationJ. Peng, J. Jia, Y. Liu, H. Li, J. Wu Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas Remote Sens. Environ., 215 (2018), pp. 255-267, 10.1016/j.rse.2018.06.010
dc.relationF. Zullo, G. Fazio, B. Romano, A. Marucci, L. Fiorini Effects of urban growth spatial pattern (UGSP) on the land surface temperature (LST): a study in the Po Valley (Italy) Sci. Total Environ., 650 (2019), pp. 1740-1751, 10.1016/j.scitotenv.2018.09.331
dc.relationC. Alexander Normalised difference spectral indices and urban land cover as indicators of land surface temperature (LST) Int. J. Appl. Earth Obs. Geoinf., 86 (2020), Article 102013, 10.1016/j.jag.2019.102013
dc.relationL. Sheng, X. Tang, H. You, Q. Gu, H. Hu Comparison of the urban heat island intensity quantified by using air temperature and Landsat land surface temperature in Hangzhou, China Ecol. Indic., 72 (2017), pp. 738-746, 10.1016/j.ecolind.2016.09.009
dc.relationB.T.W. Putra, P. Soni Evaluating NIR-Red and NIR-Red edge external filters with digital cameras for assessing vegetation indices under different illumination Infrared Phys. Technol., 81 (2017), pp. 148-156, 10.1016/j.infrared.2017.01.007
dc.relationD. Gozdowski, M. Stępień, E. Panek, J. Varghese, E. Bodecka, J. Rozbicki, S. Samborski Comparison of winter wheat NDVI data derived from Landsat 8 and active optical sensor at field scale Remote Sens. Appl. Soc. Environ., 20 (2020), Article 100409, 10.1016/j.rsase.2020.100409
dc.relationL. Costa, L. Nunes, Y. Ampatzidis A new visible band index (vNDVI) for estimating NDVI values on RGB images utilizing genetic algorithms Comput. Electron. Agric., 172 (2020), Article 105334, 10.1016/j.compag.2020.105334
dc.relationA. Balew, T. Korme Monitoring land surface temperature in Bahir Dar city and its surrounding using Landsat images Egypt. J. Remote. Sens. Space Sci. (2020), pp. 1-16, 10.1016/j.ejrs.2020.02.001
dc.relationB.J. He, Z.Q. Zhao, L.D. Shen, H.B. Wang, L.G. Li An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on Landsat 8 image Sustain. Cities Soc., 44 (2019), pp. 416-427, 10.1016/j.scs.2018.10.049
dc.relationA. Guo, J. Yang, W. Sun, X. Xiao, J.X. Cecilia, C. Jin, X. Li Impact of urban morphology and landscape characteristics on spatiotemporal heterogeneity of land surface temperature Sustain. Cities Soc., 63 (2020), Article 102443, 10.1016/j.scs.2020.102443
dc.relationK.J. Gohain, P. Mohammad, A. Goswami Assessing the impact of land use land cover changes on land surface temperature over Pune city, India Quat. Int., 1 (2020), pp. 1-38, 10.1016/j.quaint.2020.04.052
dc.relationT. Adulkongkaew, T. Satapanajaru, S. Charoenhirunyingyos, W. Singhirunnusorn Effect of land cover composition and building configuration on land surface temperature in an urban-sprawl city, case study in Bangkok Metropolitan Area, Thailand Heliyon, 6 (2020), p. 04485, 10.1016/j.heliyon.2020.e04485
dc.relationM. Lemus-Canovas, J. Martin-Vide, M. Moreno-Garcia, J.A. Lopez-Bustins Estimating Barcelona's metropolitan daytime hot and cold poles using Landsat-8 Land Surface Temperature Sci. Total Environ., 699 (2020), Article 134307, 10.1016/j.scitotenv.2019.134307
dc.relationL.S. Ferreira, D.H.S. Duarte Exploring the relationship between urban form, land surface temperature and vegetation indices in a subtropical megacity Urban Clim., 27 (2019), pp. 105-123, 10.1016/j.uclim.2018.11.002
dc.relationR.L.N. Wanderley, L.M. Domingues, C.A. Joly, H.R. da. Rocha Relationship between land surface temperature and fraction of anthropized area in the Atlantic forest region, Brazil Plos One, 14 (2019), pp. 1-19, 10.1371/journal.pone.0225443
dc.relationW.L.F. Correia Filho, D. de, B. Santiago, J.F. de. Oliveira-Jðnior, C.A. da. Silva Junior Impact of urban decadal advance on land use and land cover and surface temperature in the city of Maceió, 87, Land Use Policy,, Brazil (2019), 10.1016/j.landusepol.2019.104026
dc.relationR.A. Carrasco, M.M.F. Pinheiro, J. Marcato Junior, R.E. Cicerelli, P.A. Silva, L.P. Osco, A.P.M. Ramos Land use/land cover change dynamics and their effects on land surface temperature in the western region of the state of São Paulo, Brazil Reg. Environ. Change, 20 (2020), pp. 1-12, 10.1007/s10113-020-01664-z
dc.relationC.I. Portela, K.G. Massi, T. Rodrigues, E. Alcântara Impact of urban and industrial features on land surface temperature: evidences from satellite thermal indices Sustain. Cities Soc., 56 (2020), Article 102100, 10.1016/j.scs.2020.102100
dc.relationV.M. Sayão, N.V. dos. Santos, W. de, S. Mendes, K.P.P. Marques, J.L. Safanelli, R.R. Poppiel, J.A.M. Demattê Land use/land cover changes and bare soil surface temperature monitoring in southeast Brazil Geo. Reg., 22 (2020), Article e00313, 10.1016/j.geodrs.2020.e00313
dc.relationIbge, Brazilian Institute of Geography and Statistics, Demographic Data of 2020 - Brazil, 2021. https://cidades.ibge.gov.br/brasil/rs/passo-fundo/panorama.
dc.relationEmbrapa, Climate of Passo Fundo in Brazil, 2020. http://www.cnpt.embrapa.br/pesquisa/agromet/app/principal/boletim.php.
dc.relationL.S. Maculan, V.R. Tângari Structuring elements of the territory and the effects on the urban border of Passo Fundo R. Nac. Geren. Cid., 8 (2020), pp. 18-35, 10.17271/2318847285720202284
dc.relationA. Chemura, O. Mutanga, T. Dube Integrating age in the detection and mapping of incongruous patches in coffee (Coffea arabica) plantations using multi-temporal Landsat 8 NDVI anomalies Int. J. Appl. Earth Obs. Geoinf., 57 (2017), pp. 1-13, 10.1016/j.jag.2016.12.007
dc.relationV. Rodriguez-Galiano, E. Pardo-Iguzquiza, M. Sanchez-Castillo, M. Chica-Olmo, M. Chica-Rivas Downscaling Landsat 7 ETM+ thermal imagery using land surface temperature and NDVI images Int. J. Appl. Earth Obs. Geoinf., 18 (2012), pp. 515-527, 10.1016/j.jag.2011.10.002
dc.relationS. Roy, S. Pandit, E.A. Eva, Md.S.H. Bagmar, M. Papia, L. Banik, T. Dube, F. Rahman, M.A. Razi Examining the nexus between land surface temperature and urban growth in Chattogram Metropolitan Area of Bangladesh using long term Landsat series data Urban Clim., 32 (2020), Article 100593, 10.1016/j.uclim.2020.100593
dc.relationEmbrapa, Meteorological measurements of Brazil, 2020. http://www.cnpt.embrapa.br/pesquisa/agromet/app/principal/graficos.php.
dc.relationM.L. Plume SPSS (Statistical Package for the Social Sciences) Encycl. Inf. Syst. (2003), pp. 187-196, 10.1016/b0-12-227240-4/00166-0
dc.relationD. Bera, Nd Chatterjee, S. Bera Comparative performance of linear regression, polynomial regression and generalized additive model for canopy cover estimation in the dry deciduous forest of West Bengal R. S. A. S. E., 22 (2021), Article 100502, 10.1016/j.rsase.2021.100502
dc.relationK. Pandiaraj, P. Sivakumar, K.J. Prakash Machine learning based effective linear regression model for TSV layer assignment in 3DIC Microprocess. Microsyst., 83 (2021), Article 103953, 10.1016/j.micpro.2021.103953
dc.relationB. Djordjević, A.S. Mane, E. Krmac Analysis of dependency and importance of key indicators for railway sustainability monitoring: a new integrated approach with dea and pearson correlation Res. Transp. Bus. Manag. (2021), Article 100650, 10.1016/j.rtbm.2021.100650
dc.relationW. Zeng, T. Lu, Z. Liu, Q. Xu, H. Peng, C. Li, S. Yang, F. Yao Research on a laser ultrasonic visualization detection method for human skin tumors based on pearson correlation coefficient Opt. Laser Technol., 141 (2021), Article 107117, 10.1016/j.optlastec.2021.107117
dc.relationM. Baak, R. Koopman, H. Snoek, S. Klous A new correlation coefficient between categorical, ordinal and interval variables with Pearson characteristics Comput. Stat. Data Anal., 152 (2020), Article 107043, 10.1016/j.csda.2020.107043
dc.relationT. Fu, X. Tang, Z. Cai, Y. Zuo, Y. Tang, X. Zhao Effect of chemical composition of black tea infusion on the color of milky tea Food Res Int, 139 (2021), Article 109945, 10.1016/j.porgcoat.2019.105459
dc.relationJ. Peng, Y. Hu, J. Dong, Q. Liu, Y. Liu Quantifying spatial morphology and connectivity of urban heat islands in a megacity: a radius approach Sci. Total Environ., 714 (2020), Article 136792, 10.1016/j.scitotenv.2020.136792
dc.relationJ.Y. Deng, N.H. Wong Impact of urban canyon geometries on outdoor thermal comfort in central business districts Sustain. Cities Soc., 53 (2020), Article 101966, 10.1016/j.scs.2019.101966
dc.relationA. Vilches, Á.B. Padura, M.M. Huelva Retrofitting of homes for people in fuel poverty: approach based on household thermal comfort Energy Policy, 100 (2017), pp. 283-291, 10.1016/j.enpol.2016.10.016
dc.relationP.C. Toscan, A. Neckel, C. Korcelski, L.S. Maculan, D. Maroni, T.M. Fuga, L.P. Cambrussi, H.A. Kujawa, E.T. Bodah, B.W. Bodah Urban Cemeteries in Southern Brazil: an analysis of planimetric variations, vegetation indices and temperature J. Civ. Eng. Archit., 14 (2020), pp. 617-624, 10.17265/1934-7359/2020.11.005
dc.relationZ. Wu, L. Yao, M. Zhuang, Y. Ren Detecting factors controlling spatial patterns in urban land surface temperatures: a case study of Beijing Sustain. Cities Soc., 63 (2020), Article 102454, 10.1016/j.scs.2020.102454
dc.relationJ. Li, Y. Wang, Z. Ni, S. Chen, B. Xia An integrated strategy to improve the microclimate regulation of green-blue-grey infrastructures in specific urban forms J. Clean. Prod., 271 (2020), Article 122555, 10.1016/j.jclepro.2020.122555
dc.relationR.L. Hwang, T.P. Lin, F.Y. Lin Evaluation and mapping of building overheating risk and air conditioning use due to the urban heat island effect J. Build. Eng., 32 (2020), Article 101726, 10.1016/j.jobe.2020.101726
dc.relationA. Aslam, M. Ibrahim, A. Mahmood, M. Mubashir, H.F.K. Sipra, I. Shahid, S. Ramzan, M.T. Latif, M.Y. Tahir, P.L. Show Mitigation of particulate matters and integrated approach for carbon monoxide remediation in an urban environment J. Environ. Chem. Eng., 9 (2021), Article 105546, 10.1016/j.jece.2021.105546
dc.relationD. Wang, Y. Chen, L. Hu, J.A. Voogt, J.P. Gastellu-Etchegorry, E.S. Krayenhoff Modeling the angular effect of MODIS LST in urban areas: a case study of toulouse, france Remote Sens. Environ., 257 (2021), Article 112361, 10.1016/j.rse.2021.112361
dc.relationA.H.M. Eldesoky, J. Gil, M.B. Pont The suitability of the urban local climate zone classification scheme for surface temperature studies in distinct macroclimate regions Urban Clim., 37 (2021), Article 100823, 10.1016/j.uclim.2021.100823
dc.relationS. Pal, S. Ziaul Detection of land use and land cover change and land surface temperature in English Bazar urban centre Egypt. J. Remote. Sens. Space Sci., 20 (2017), pp. 125-145, 10.1016/j.ejrs.2016.11.003
dc.relationS. Guha, H. Govil, N. Gill, A. Dey A long-term seasonal analysis on the relationship between LST and NDBI using Landsat data Quat. Int. (2020), pp. 1-36, 10.1016/j.quaint.2020.06.041
dc.relationH. Wu, T. Wang, Q.G. Wang, Y. Cao, Y. Qu, D. Nie Radiative effects and chemical compositions of fine particles modulating urban heat island in Nanjing, China Atmos. Environ., 247 (2021), Article 118201, 10.1016/j.atmosenv.2021.118201
dc.relationY. Liu, Q. Li, L. Yang, K. Mu, M. Zhang, J. Liu Urban heat island effects of various urban morphologies under regional climate conditions Sci. Total Environ., 743 (2020), Article 140589, 10.1016/j.scitotenv.2020.140589
dc.relationC. Liotta, Y. Kervinio, H. Levrel, L. Tardieu Planning for environmental justice - reducing well-being inequalities through urban greening Environ. Sci. Policy, 112 (2020), pp. 47-60, 10.1016/j.envsci.2020.03.017
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceJournal of Environmental Chemical Engineering
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S2213343721007739?via%3Dihub
dc.subjectEngineering
dc.subjectMicroclimate
dc.subjectRemote Sensing
dc.subjectAir Temperature
dc.subjectGlobal environment
dc.titleLand surface temperature and vegetation index as a proxy to microclimate
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución