dc.creator | Díaz Torres, Yamile | |
dc.creator | Gullo, Paride | |
dc.creator | Hernández Herrera, Hernán | |
dc.creator | Torres del Toro, Migdalia | |
dc.creator | Reyes Calvo, Roy | |
dc.creator | Silva Ortega, Jorge I | |
dc.creator | Gómez Sarduy, Julio | |
dc.date | 2023-09-26T20:25:43Z | |
dc.date | 2023-09-26T20:25:43Z | |
dc.date | 2023-04-28 | |
dc.date.accessioned | 2023-10-03T19:55:02Z | |
dc.date.available | 2023-10-03T19:55:02Z | |
dc.identifier | Díaz Torres, Y.; Gullo, P.; Hernández Herrera, H.; Torres del Toro, M.; Reyes Calvo, R.; Silva Ortega, J.I.; Gómez arduy, J. Energy Performance Comparison of a Chiller Plant Using the Conventional Staging and the Co-Design Approach in the Early Design Phase of Hotel Buildings. Energies 2023, 16, 3782. https://doi.org/10.3390/en16093782 | |
dc.identifier | https://hdl.handle.net/11323/10518 | |
dc.identifier | 10.3390/en16093782 | |
dc.identifier | 1996-1073 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9173285 | |
dc.description | As part of the design process of a chiller plant, one of the final stages is the energy testing of the system in relation to future operating conditions. Recent studies have suggested establishing robust solutions, but a conservative approach still prevails at this stage. However, the results of some recent studies suggest the application of a new co-design (control–design) approach. The present research involves a comparative analysis between the use of conventional staging and the co-design approach in the design phase of a chiller plant. This paper analyzes the energy consumption estimations of six different chiller plant combinations for a Cuban hotel. For the conservative approach using on/off traditional staging, the results suggest that the best option would be the adoption of a chiller plant featuring a symmetrical configuration. However, the outcomes related to the co-design approach suggest that the best option would be an asymmetrical configuration. The energy savings results were equal to 24.8% and the resulting coefficient of performance (COP) was 59.7% greater than that of the symmetrical configuration. This research lays firm foundations for the correct choice and design of a suitable chiller plant configuration for a selected hotel, allowing for significant energy savings in the tourism sector. | |
dc.format | 23 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | |
dc.publisher | Switzerland | |
dc.relation | Energies | |
dc.relation | 1. Fang, X.; Jin, X.; Du, Z.; Wang, Y.; Shi, W. Evaluation of the design of chilled water system based on the optimal operation
performance of equipments. Appl. Therm. Eng. 2017, 113, 435–448. [CrossRef] | |
dc.relation | 2. ASHRAE. ASHRAE Fundamentals Handbook; ASHRAE: Peachtree Corners, GA, USA, 2017; ISBN 10: 1939200598. | |
dc.relation | 3. Díaz Torres, Y.; Álvarez Guerra Plasencia, A.; Viego Felipe, P.; Crespo Sanchez, G.; Diaz Gonzalez, M. Chiller plant design. Review
of the aspects that involve its efficient design. Ing. Energética 2020, 41, e1711. | |
dc.relation | 4. Taylor, S. Fundamentals of Design and Control of Central Chilled-Water Plans (I-P); Atlanta ASHRAE: Peachtree Corners, GA, USA,
2017; ISBN 978-1-939200-67-9. | |
dc.relation | 5. Cheng, Q.; Wang, S.; Yan, C. Sequential Monte Carlo simulation for robust optimal design of cooling water system with quantified
uncertainty and reliability. Energy 2016, 118, 489–501. [CrossRef] | |
dc.relation | 6. Yan, C.; Cheng, Q.; Cai, H. Life-Cycle optimization of a chiller plant with quantified analysis of uncertainty and reliability in
commercial buildings. Appl. Sci. 2019, 9, 1548. [CrossRef] | |
dc.relation | 7. Huang, P.; Huang, G.; Augenbroe, G.; Li, S. Optimal configuration of multiple-chiller plants under cooling load uncertainty for
different climate effects and building types. Energy Build. 2018, 158, 684–697. [CrossRef] | |
dc.relation | 8. Li, H.; Wang, S.; Xiao, F. Probabilistic optimal design and on-site adaptive commissioning of building air-conditioning systems
concerning uncertainties. Energy Procedia 2019, 158, 2725–2730. [CrossRef] | |
dc.relation | 9. Sun, Y.; Wang, S.; Huang, G. Chiller sequencing control with enhanced robustness for energy efficient operation. Energy Build.
2009, 41, 1246–1255. [CrossRef] | |
dc.relation | 10. Gang, W.; Wang, S.; Xiao, F.; Gao, D.-c. Robust optimal design cooling systems considering cooling load uncertainty and
equipment reliability. Appl. Energy 2015, 159, 265–275. [CrossRef] | |
dc.relation | 11. Gang, W.; Wang, S.; Yan, C.; Xiao, F. Robust optimal design of building cooling systems concerning uncertainties using mini-max
regret theory. Sci. Technol. Built Environ. 2015, 21, 789–799. [CrossRef] | |
dc.relation | 12. Cheng, Q.; Yan, C.; Wang, S. Robust Optimal Design of Chiller Plants Based on Cooling Load Distribution. Energy Procedia
2015, 75, 1354–1359. [CrossRef] | |
dc.relation | 13. Niu, J.; Tian, Z.; Lu, Y.; Zhao, H.; Lan, B. A robust optimization model for designing the building cooling source under cooling
load uncertainty. Appl. Energy 2019, 241, 390–403. [CrossRef] | |
dc.relation | 14. Chen, Y.; Yang, C.; Pan, X.; Yan, D. Desing and operation optimization of multi-chiller plants based on energy performance
simulation. Energy Build. 2020, 222, 110100. [CrossRef] | |
dc.relation | 15. Bhattacharya, A.; Vasisht, S.; Adetola, V.; Huang, S.; Sharma, H.; Vrabie, D. Control co-design of commercial building chiller plant
using Bayesian optimization. Energy Build. 2021, 246, 111077. [CrossRef] | |
dc.relation | 16. Garcia-Sanz, M. Control co-design: An engineering game changer. Adv. Control. Appl. Eng. Ind. Syst. 2019, 1, e18. [CrossRef] | |
dc.relation | 17. Rampazzo, M. A static moving boundary modelling approach for simulation of indirect evaporative free cooling systems. Appl.
Energy 2019, 250, 1719–1728. | |
dc.relation | 18. Masburah, R.; Sinha, S.; Lochan, R.; Dey, S.; Zhu, Q. Co-Designing Intelligent Control of Building HVAC and Microgrids. DSD
2021: Euromicro Conference on Digital System Design. 2021. Available online: https://ieeexplore.ieee.org/document/9556332
(accessed on 20 December 2021). | |
dc.relation | 19. Díaz-Torres, Y.; Calvo, R.; Herrera, H.; Gomez, S.; Guerra, M.; Silva, J. Procedure to obtain the optimal distribution cooling
capacity of an air-condensed chiller plant for a hotel facility conceptual design. Energy Rep. 2021, 7, 622–637. [CrossRef] | |
dc.relation | 20. Díaz Torres, Y.R.; Hernandez, H.; Torres, M.; Alvarez-Guerra, M.; Gullo, P.; Silva, I. Statistical- mathematical procedure to
determine the cooling distribution of a chiller plant. Energy Rep. 2022, 8, 512–526. [CrossRef] | |
dc.relation | 21. Thangavelu, S.R.; Myat, A.; Khambadkone, A. Energy optimization methodology of multi-chiller plant in commercial buildings.
Energy 2017, 123, 64–76. [CrossRef] | |
dc.relation | 22. Díaz-Torres, Y.; Valdivia-Noda, Y.; Monteagudo-Yanes, J.P.; Miranda-Torres, Y. Application of building energy simulation in the
validation of operational strategies of HVAC systems on a tropical hotel. Ing. Mecánica 2017, 20, 31–38. | |
dc.relation | 23. TRNSYS 16; Solar Energy Laboratory, University of Wisconsin-Madison: Madison, WI, USA, 2006; Volume 5, Mathematical
Reference. | |
dc.relation | 24. ASHRAE 55; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Washington, DC, USA, 2010. | |
dc.relation | 25. Díaz-Torres, Y.; Santana-Justiz, M.; Francisco-Pedro, G.J.; Daniel-Álvarez, L.; Miranda-Torres, Y.; Guerra-Plascencia, M.Á.
Methodology for the preparation and selection of black box mathematical models for the energy simulation of screw type chillers.
Ing. Mecánica 2020, 23, e612. | |
dc.relation | 26. White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 1980,
48, 817–838. [CrossRef] | |
dc.relation | 27. Breusch, T.S.; Pagan, A. The Review of Economic Studies. In Econometrics Issue; Oxford University Press: Oxford, UK, 1980;
Volume 47, pp. 239–253. | |
dc.relation | 28. Jarque, C.M.; Bera, A.K. A test for normality of observations and regression residuals. Int. Stat. Rev. 1987, 55, 163–172. [CrossRef] | |
dc.relation | 29. Catrini, P.; Piacentino, A.; Cardona, F.; Ciulla, G. Exergoeconomic analysis as support in decision-making for the design and
operation of multiple chiller in air conditioning applications. Energy Convers. Manag. 2020, 220, 113051. [CrossRef] | |
dc.relation | 30. Teimourzadeh, H.; Jabari, F.; Mohammadi-Ivatloo, B. An augmented group search optimization algorithm for optimal cooling-load
dispatch in multi-chiller plants. Comput. Electr. Eng. 2020, 85, 106434. [CrossRef] | |
dc.relation | 31. Ho, W.T.; Yu, F.W. Improved model and optimization for the energy performance of chiller syste with diverse component staging.
Energy 2021, 217, 119376. [CrossRef] | |
dc.relation | 32. Chang, Y.-C.; Lin, F.-A.; Lin, C.H. Optimal Chillers sequencing by branch and bound method for saving energy. Energy Convers.
Manag. 2005, 46, 2158–2172. [CrossRef] | |
dc.relation | 33. Witkoswski, K.; Haering, P.; Seidelt, S.; Pini, N. Role of thermal technologies for enhancing flexibility in multi-energy systems
through sector coupling: Technical suitability and expected developments. IET Energy Syst. Integr. 2020, 2, 69–79. [CrossRef] | |
dc.relation | 34. Acerbi, A.; Rampazzo, M.; De Nicolao, G. Na exact algorithm for the optimal chiller loading problem and its application to the
OptimalChiller Sequencing Problem. Energies 2020, 13, 6372. [CrossRef] | |
dc.relation | 35. Satué, M.; Arahal, M.; Acedo, L.; Ortega, M. Economic versus energetic model predictive control of a cold production plant with
thermal energy storage. Appl. Therm. Eng. 2022, 210, 118309. [CrossRef] | |
dc.relation | 36. Qiu, S.; Zhang, W.; Li, J.; Chen, J.; Li, Z.; Li, Z. A chiller operation strategy based on multiple-objetive optimization. Energy
Procedia 2018, 152, 318–323. [CrossRef] | |
dc.relation | 37. Zheng, Z.; Li, J.; Duan, P. Optimal chiller loading by improved artificial fish swarm algorithm for energy saving. Math. Comput.
Simul. 2019, 155, 227–243. [CrossRef] | |
dc.relation | 38. Norma Cubana NC 217: 2002; Climatización. Especificaciones de Diseños. Temperaturas en Locales Climatizados. Norma Cubana:
Havana, Cuba, 2002. | |
dc.relation | 39. Guerra, M.A.; Cabello, J.; Sousa, V.; Sagastume, A.; Monteagudo, Y.; Lapido, M.; Lara, B. Forescasting and control of the electricity
consumption in hotels. In Proceedings of the IX International Conference for Renewable Energy, Energy Saving and Energy Education
(CIER 2017); Centro de Estudio de Tecnologias Energeticas Renovables CETER: Havana, Cuba, 2017; p. 1CD-ROM. | |
dc.relation | 40. Valdivia, Y.; Álvarez Guerra, M.; Gómez, J.; Luc, H.; Vandecasteele, C. Sanitary hot water production from heat recovery in hotel
buildings in Cuba. Ing. Energética 2019, 40, 234–244. | |
dc.relation | 41. E-View 12 Student Version. Available online: https://www.eviews.com/home.html (accessed on 14 February 2023). | |
dc.relation | 42. METEONORM, 2020. Global Meteorological Database for Engineers, Planners and Education. Available online: www.meteonorm.
com/pages/en/meteonorm.php (accessed on 10 July 2022). | |
dc.relation | 43. MATLAB Simulink. 2018. Available online: https://www.mathworks.com/help/simulink/release-notes-R2018a.html (accessed
on 14 February 2023). | |
dc.relation | 44. Norma Cubana NC 220-3:2009; Edificaciones-Requisitos de diseño para la eficiencia energética-Parte 3: Sistemas y Equipamiento
de Calefacción, Ventilación y Aire Acondicionado. Oficina Nacional de Normalización (NC): Havana, Cuba, 2009. | |
dc.relation | 23 | |
dc.relation | 1 | |
dc.relation | 9 | |
dc.relation | 16 | |
dc.rights | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. | |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://www.mdpi.com/1996-1073/16/9/3782 | |
dc.subject | Chiller plant | |
dc.subject | Co-design | |
dc.subject | Traditional staging | |
dc.subject | Optimal chiller loading | |
dc.subject | Optimal chiller sequencing | |
dc.title | Energy performance comparison of a chiller plant using the conventional staging and the co-design approach in the early design phase of hotel buildings | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |