dc.creatorAkinyemi, Segun Ajayi
dc.creatorBohórquez, Ferney
dc.creatorNazrul, Islam
dc.creatorSaikia, Binoy
dc.creatorHoffmann Sampaio, Carlos
dc.creatorCrissien Borrero, Tito José
dc.creatorSilva, Luis F. O
dc.date2022-07-27T18:50:03Z
dc.date2022-07-27T18:50:03Z
dc.date2021
dc.date.accessioned2023-10-03T19:54:25Z
dc.date.available2023-10-03T19:54:25Z
dc.identifierSegun A. Akinyemi, Ferney Bohórquez, Nazrul Islam, Binoy K. Saikia, Carlos H. Sampaio, Tito J. Crissien, Luis F.O. Silva, Petrography and geochemistry of exported Colombian coals: Implications from correlation and regression analyses, Energy Geoscience, Volume 2, Issue 3, 2021, Pages 201-210, ISSN 2666-7592, https://doi.org/10.1016/j.engeos.2020.12.003.
dc.identifier2666-7592
dc.identifierhttps://hdl.handle.net/11323/9409
dc.identifierhttps://doi.org/10.1016/j.engeos.2020.12.003.
dc.identifier10.1016/j.engeos.2020.12.003.
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173189
dc.descriptionThe petrology of coal, as determined by the microscopic analysis of organic and inorganic elemental constituents of coal, provides information on its nature and characteristics. Coal is used worldwide in the production of thermal energy and coke. In the case of high-quality Colombian coals, only limited studies have been carried out. The present study presents the geochemical, mineralogical, and petrological characteristics of coal samples collected from Puerto Drummond in Cienaga, Colombia, to predict their potential uses. Therefore, the ultimate, proximate, petrographic, gross calorific value (GCV), ash fusion temperature, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray fluorescence (XRF), and Thermogravimetric (TG) analyses were employed in this study. The petrological analysis reveals that Colombian coals are naturally more abundant in vitrinite (72%) than inertinite (14–23%) macerals. Silicates and aluminosilicate are the main minerals present as fine particles mixed with macerals. The XRD and FTIR analyses show that the most common and dominant minerals are quartz, while gypsum, hematite, calcite and mica occur in lesser amounts. The oxide composition of the coal ashes consists of 51–58% SiO2 and 18–25% Al2O3 as determined by XRF analysis. In correlation and regression analysis, the moisture content shows a reverse correlation with GCV (Regression value of R2 = 0.68). This study helps researchers to comprehend the importance of Colombian coals and presents various techniques for characterisation of coals.
dc.format10 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherBeijing: Elsevier B.V. on behalf of KeAi Communications Co. Ltd
dc.publisherChina
dc.relationEnergy Geoscience
dc.relationAo, W., Huang, W., Weng, C., Xiao, X., Liu, D., Tang, X., Chen, P., (...), Finkelman, R.B. Coal petrology and genesis of Jurassic coal in the Ordos Basin, China (2012) Geoscience Frontiers, 3 (1), pp. 85-95. Cited 20 times. https://www.sciencedirect.com/journal/geoscience-frontiers doi: 10.1016/j.gsf.2011.09.004
dc.relationBaruah, B.P., Khare, P. Pyrolysis of high sulfur Indian coals (2007) Energy and Fuels, 21 (6), pp. 3346-3352. Cited 54 times. doi: 10.1021/ef070005i
dc.relationBritish Petroleum Company (Bp) Statistical Review of World Energy (2017) . Cited 2677 times. British Petroleum Company London
dc.relationChoudhury, R., Saikia, J., Saikia, B.K. Mineralogical and ash geochemical studies of coal-mine shale and its hydrocarbon potential: A case study of shale from Makum coalfield, Northeast India (2017) Journal of the Geological Society of India, 90 (3), pp. 329-334. Cited 3 times. http://www.springerlink.com/content/121451/ doi: 10.1007/s12594-017-0721-9
dc.relationDrummond, L. Drummond cerróaño record en exportaciones. con más de 32.6 millones de toneladas de carbónenviadas a 24 países (2017) http://www.drummondltd.com/drummond-cerro-ano-record-en-exportaciones-con-mas-de-326-millones-de-toneladas-de-carbon-enviadas-a-24-paises/ http://www.drummondltd.com
dc.relationDutta, M., Saikia, J., Taffarel, S.R., Waanders, F.B., de Medeiros, D., Cutruneo, C.M.N.L., Silva, L.F.O., (...), Saikia, B.K. Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage (2017) Geoscience Frontiers, 8 (6), pp. 1285-1297. Cited 68 times. https://www.sciencedirect.com/journal/geoscience-frontiers doi: 10.1016/j.gsf.2016.11.014
dc.relationHackley, P.C., Warwick, P.D., González, E. Petrology, mineralogy and geochemistry of mined coals, western Venezuela (2005) International Journal of Coal Geology, 63 (1-2 SPEC. ISS.), pp. 68-97. Cited 20 times. http://www.sciencedirect.com/science/journal/01665162 doi: 10.1016/j.coal.2005.02.006
dc.relationHower, J.C., Graham, U.M., Wong, A.S., Robertson, J.D., Haeberlin, B.O., Thomas, G.A., Schram, W.H. Influence of flue-gas desulfurization systems on coal combustion by- product quality at Kentucky power stations burning high-sulfur coal (1998) Waste Management, 17 (8), pp. 523-533. Cited 29 times. doi: 10.1016/S0956-053X(97)10060-5
dc.relationHuang, H., Wang, K.Y., Klein, M.T., Calkins, W.H. Determination of coal rank by thermogravimetric analysis (1996) Fuel Energy Abstr., 37, p. 170. Cited 6 times.
dc.relationIEA Coal Information (2017) . Cited 32 times. OECD Publishing Paris
dc.relationAnon New inertinite classification (ICCP System 1994) (2001) Fuel, 80 (4), pp. 459-471. Cited 699 times. doi: 10.1016/S0016-2361(00)00102-2
dc.relationInternational Organization for Standardization Hard Coal – Determination of Hardgrove Grindability Index (ISO Standard No. 5074) (1994) . Cited 11 times.
dc.relationAnon New vitrinite classification (ICCP system 1994) (1998) Fuel, 77 (5), pp. 349-358. Cited 511 times. doi: 10.1016/S0016-2361(98)80024-0
dc.relationInternational Organization for Standardization Coal – Ultimate Analysis (ISO Standard No. 17247) (2005)
dc.relationInternational Organization for Standardization Hard Coal and Coke – Manual Sampling (ISO Standard No. 18283) (2006)
dc.relationInternational Organization for Standardization Solid Mineral Fuels – Determination of Sulfur by IR Spectrometry (ISO Standard No. 19579) (2006)
dc.relationInternational Organization for Standardization Hard Coal and Coke – Determination of Ash Fusibility (ISO Standard No. 540) (2008)
dc.relationInternational Organization for Standardization Hard Coal – Determination of Total Moisture (ISO Standard No. 589) (2008)
dc.relationInternational Organization for Standardization Solid Mineral Fuels – Determination Gross Calorific Value by the Bomb Calorimetric Method and Calculation of Net Calorific Value (ISO Standard No. 1928) (2009) . Cited 172 times.
dc.relationInternational Organization for Standardization Solid Mineral Fuels – Determination of Ash (ISO Standard No. 1171) (2010)
dc.relationInternational Organization for Standardization Solid Mineral Fuels – Determination of Total Carbon. Hydrogen and Nitrogen Content – Instrumental Method (ISO Standard No. 29541) (2010)
dc.relationInternational Organization for Standardization Coal – Proximate Analysis (ISO Standard No. 17246) (2010)
dc.relationInternational Organization for Standardization Hard Coal and Coke – Determination of Volatile Matter (ISO Standard No. 562) (2010)
dc.relationInternational Organization for Standardization Hard Coal – Determination of Crucible Swelling Number (ISO Standard No. 501) (2012)
dc.relationInternational Organization for Standardization Solid Mineral Fuels – Hard Coal – Determination of Moisture in the General Analysis Test Sample by Drying in Nitrogen (ISO Standard No. 11722) (2013) . Cited 36 times.
dc.relationKhare, P., Baruah, B.P., Rao, P.G. Application of chemometrics to study the kinetics of coal pyrolysis: A novel approach (2011) Fuel, 90 (11), pp. 3299-3305. Cited 45 times. doi: 10.1016/j.fuel.2011.05.017
dc.relationKhare, P., Baruah, B.P. Structural parameters of perhydrous indian coals (2010) International Journal of Coal Preparation and Utilization, 30 (1), pp. 44-67. Cited 21 times. doi: 10.1080/19392691003781616
dc.relationKostova, I., Isaeva, E. Petrography, mineralogy and geochemistry of lignite from stanyantsi basin, Bulgaria (2016) Rev. Bulgarian Geol. Soc., 77 (1), pp. 65-80. Cited 2 times.
dc.relationLópez, I.C., Ward, C.R. Composition and mode of occurrence of mineral matter in some Colombian coals (2008) International Journal of Coal Geology, 73 (1), pp. 3-18. Cited 51 times. doi: 10.1016/j.coal.2007.03.005
dc.relationMesroghli, Sh., Jorjani, E., Chehreh Chelgani, S. Estimation of gross calorific value based on coal analysis using regression and artificial neural networks (2009) International Journal of Coal Geology, 79 (1-2), pp. 49-54. Cited 94 times. doi: 10.1016/j.coal.2009.04.002
dc.relationPainter, Paul C., Snyder, Randy W., Starsinic, Michael, Coleman, Michael M., Kuehn, Deborah W., Davis, Alan CONCERNING THE APPLICATION OF FT-IR TO THE STUDY OF COAL: A CRITICAL ASSESSMENT OF BAND ASSIGNMENTS AND THE APPLICATION OF SPECTRAL ANALYSIS PROGRAMS (1981) Applied Spectroscopy, 35 (5), pp. 475-485. Cited 548 times. doi: 10.1366/0003702814732256
dc.relationPickel, W., Kus, J., Flores, D., Kalaitzidis, S., Christanis, K., Cardott, B.J., Misz-Kennan, M., (...), Wagner, N. Classification of liptinite – ICCP System 1994 (2017) International Journal of Coal Geology, 169, pp. 40-61. Cited 345 times. http://www.sciencedirect.com/science/journal/01665162 doi: 10.1016/j.coal.2016.11.004
dc.relationSaikia, B.K., Boruah, R.K., Gogoi, P.K., Baruah, B.P. A thermal investigation on coals from Assam (India) (2009) Fuel Processing Technology, 90 (2), pp. 196-203. Cited 76 times. doi: 10.1016/j.fuproc.2008.09.007
dc.relationSaikia, B.K., Khound, K., Sahu, O.P., Baruah, B.P. Feasibility studies on cleaning of high sulfur coals by using ionic liquids (2015) International Journal of Coal Science and Technology, 2 (3), pp. 202-210. Cited 21 times. http://link.springer.com/journal/volumesAndIssues/40789 doi: 10.1007/s40789-015-0074-1
dc.relationSaikia, B.K., Sharma, A., Sahu, O.P., Baruah, B.P. Study on physico-chemical properties, mineral matters and leaching characteristics of some Indian coals and fly ash (2015) Journal of the Geological Society of India, 86 (3), pp. 275-282. Cited 10 times. http://www.springerlink.com/content/121451/ doi: 10.1007/s12594-015-0312-6
dc.relationSaikia, B.K., Dutta, A.M., Baruah, B.P. Feasibility studies of de-sulfurization and de-ashing of low grade medium to high sulfur coals by low energy ultrasonication (2014) Fuel, 123, pp. 12-18. Cited 45 times. doi: 10.1016/j.fuel.2014.01.067
dc.relationSaxby, J.D., Chatfield, P., Taylor, G.H., Fitzgerald, J.D., Kaplan, I.R., Lu, S.-T. Effect of clay minerals on products from coal maturation (1992) Organic Geochemistry, 18 (3), pp. 373-383. Cited 15 times. doi: 10.1016/0146-6380(92)90078-C
dc.relationSharma, A., Saikia, B.K., Phukan, S., Baruah, B.P. Petrographical and thermo-chemical investigation of some North East Indian high sulphur coals (2016) Journal of the Geological Society of India, 88 (5), pp. 609-619. Cited 5 times. http://www.springerlink.com/content/121451/ doi: 10.1007/s12594-016-0527-1
dc.relationSilva, L.F.O., Sampaio, C.H., Guedes, A., Fdez-Ortiz De Vallejuelo, S., Madariaga, J.M. Multianalytical approaches to the characterisation of minerals associated with coals and the diagnosis of their potential risk by using combined instrumental microspectroscopic techniques and thermodynamic speciation (2012) Fuel, 94, pp. 52-63. Cited 82 times. doi: 10.1016/j.fuel.2011.11.007
dc.relationSpeight, J.G. The Chemistry and Technology of Coal (1983) . Cited 2021 times. Marcel Dekker New York
dc.relationVassilev, S.V., Vassileva, C.G. Occurrence, abundance and origin of minerals in coals and coal ashes (1996) Fuel Processing echnology, 48 (2), pp. 85-106. Cited 167 times. doi: 10.1016/S0378-3820(96)01021-1
dc.relationVelásquez, B., Mercedes, E. Coal Production and Economic Growth in the Caribbean Mining Region in Colombia (2016) , pp. 1-38. Revista de Economía del Caribe17
dc.relationWilson, M.J. Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (1994) . Cited 235 times.
dc.relation210
dc.relation201
dc.relation3
dc.relation2
dc.rights© 2020 Sinopec Petroleum Exploration and Production Research Institute. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S2666759220300822?via%3Dihub
dc.subjectCoal characterisation
dc.subjectGeochemistry
dc.subjectMineralogy
dc.subjectCoal petrology
dc.subjectColombia
dc.titlePetrography and geochemistry of exported colombian coals: Implications from correlation and regression analyses
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.coverageColombia


Este ítem pertenece a la siguiente institución