dc.creatorSimancas-García, José L.
dc.creatorMELÉNDEZ, FARID
dc.creatorR. González, Ramón E.
dc.creatorCárdenas, César
dc.date2021-11-08T13:11:53Z
dc.date2021-11-08T13:11:53Z
dc.date2021
dc.date2022-09-17
dc.date.accessioned2023-10-03T19:53:54Z
dc.date.available2023-10-03T19:53:54Z
dc.identifier03029743
dc.identifierhttps://hdl.handle.net/11323/8844
dc.identifier10.1007/978-3-030-86653-2_15
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173105
dc.descriptionThe construction of integrated circuits involves testing the correct operation of its internal blocks. For this, a common practice is the integration of functional blocks to stimulate the internal subsystems and extract the responses to those stimuli. In this article, the design and simulation of a circuit for the extraction of the response signals of the devices under test in analog and mixed-signal integrated circuits is presented. The extraction block is a 2-stage 5-bit segmented A/D converter, operating at a sampling frequency of 10 MHz, implemented in a 0.12 µm technological process, which can be powered with 1.5 Vdc. This proposal offers a reduction in the area consumed, by requiring fewer comparators than other similar solutions found in the literature.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherSpringer International Publishing
dc.relationSimancas-García, J.L.: Diagnóstico de Circuitos Integrados Analógicos y de Comunicaciones. INGE@UAN - Tendencias en la Ingeniería 1(2), 7–19 (2011)
dc.relationKundert, K., et al.: Design of mixed-signal systems-on-a-chip. IEEE Trans. Comput.-Aided Des. Integr. Circuita Syst. 19(12), 1561–1571 (2000)
dc.relationZorian, Y., Marinissen, E., Dey, S.:Testing embedded-core-based sys- tem chips. In: IEEE Computer, pp. 52–60. Junio (1999)
dc.relationHafed, M., Abaskharoun, N., Roberts, G.: A 4-GHz effective sample rate integrated test core for analog and mixed-signal circuits. IEEE J. Solid-State Circuits 37(4), 499–514 (2002)
dc.relationHafed, M., Roberts, G.: A stand-alone integrated excitation/extraction systems for analog BIST application. In: IEEE 2000 Costum Integrated Circuit Conference, p. 4. IEEE (2000)
dc.relationHafed, M., Roberts, G.: Techniques for high-frequency integrated test and measurement. IEEE Trans. Instrument. Measur. 52(16), 1780–1786 (2003)
dc.relationZorian, Y.: System-chips test strategies. In: 35th Design Automation Conference 1998, San Francisco, p. 6. ACM (1998)
dc.relationAlbustani, H.: Modelling methods for testability analysis of analog integrated circuits based on pole-zero analysis. Prüfung, 182 p. Dissertation (Ph.D.). Universität Duisburg-Essen. Fakultät für Ingenieurwissenschaften (2004)
dc.relationDillinger, T.: VLSI Engineering, p. 863. Prentice-Hall, Estados Unidos (1988)
dc.relationDeschamps, J.-P.: Diseño de circuitos integrados de aplicación especifica ASIC, p. 385. Paraninfo, España (1994)
dc.relationPucknell, D., Eshraghian, K.: Basic VLSI design, 3rd edn., p. 495. Prentice-Hall, Australia (1993)
dc.relationDufort, B., Roberts, G.: Signal generation using periodic single and multi- bit sigma-delta modulated streams, p. 10 (1997)
dc.relationDufort, B., Roberts, G.: Optimized periodic sigma-delta bitstreams for analog signal generation, vol. 4, p. 4
dc.relationHaurie, X., Roberts, G.: Arbitrary-precision signal generation for mixed-signal built-in-self-test. IEEE Trans. Circuits Syst.—II Analog Digital Signal Process. 45(11), 1425–1432 (1998)
dc.relationHawrysh, E., Roberts, G.: An integration of memory-based analog signal generation into current dft architectures. IEEE Trans. Instrument. Measur. 47(3), 748–759 (1998)
dc.relationSimancas-García, J.L., Caicedo-Ortiz, J.G.: Modelo computacional de un modulador ∑-∆ de 2° orden para la generación de señales de prueba en circuitos integrados analógicos. INGE@UAN - Tendencias en la Ingeniería 5(9), 43–55 (2014)
dc.relationRubio, A., et al.: Diseño de circuitos y sistemas integrados, p. 446. Alfaomega, Mexico (2005)
dc.relationSoria Olivas, E., et al.: Tratamiento digital de señales: Problemas y ejercicios resueltos, p. 400. Prentice-Hall, España (2003)
dc.relationAziz, P., Sorensen, H., Van Der Spiegel, J.: An overview of sigma-delta converters: how a 1-bit ADC achieves more than 16-bit resolution. IEEE Sig. Process. Magazine, 61–84 (1996)
dc.relationProakis, J., Manolakis, D.: Tratamiento digital de señales: Principios, algoritmos, y aplicaciones, 3rd edn. Prentice-Hall, España (2003)
dc.relationFranco, S.: Design with Operational Amplifiers and Analog Integrated Circuits, 3rd edn., p. 680. MacGraw-Hill, Estados Unidos (2002)
dc.relationRashid, M.: Circuitos Microelectrónicos: Análisis y Diseño, p. 990. International Thomson, México (1999)
dc.relationSedra, A., Smith, K.: Circuitos Microelectrónicos, 4th edn., p. 1232. Oxford University, México (1998)
dc.relationVan De Plassche, R., Baltus, M.: An 8-bit 100-MHZ full-Nyquist analog-to-digital converter. IEEE J. Solid-State Circuits 23(6), 1334–1344 (1988)
dc.relationSimancas-García, J.L.: Diseño de un Amplificador Operacional CMOS de Amplio Ancho de Banda y Alta Ganancia para Aplicaciones de Alta Velocidad. In: IngeCUC, vol. 9, no. 1 (2013)
dc.relationSicard, E.: Microwind & Dsch User’s Manual Version 2, p. 110. National Institute of Applied Sciences, Toulouse, Francia (2002)
dc.relationPavlidis, A., Louërat, M.-M., Faehn, E., Kumar, A., Stratigopoulos, H.-G.: SymBIST: symmetry-based analog and mixed-signal built-in self-test for functional safety. IEEE Trans. Circuits Syst. I Regul. Pap. 68(6), 2580–2593 (2021)
dc.relationThaker, N.B., Ashok, R., Manikandan, S., Nambath, N., Gupta, S.: A cost-effective solution for testing high-performance integrated circuits. IEEE Trans. Compon. Packag. Manuf. Technol. 11(4), 557–564 (2021)
dc.relationStratigopoulos, H.-G., Streitwieser, C.: Adaptive test with test escape estimation for mixed-signal ICs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37(10), 2125–2138 (2017)
dc.relationShi, J., Deng, Y., Wang, Z., He, Q.: A combined method for analog circuit fault diagnosis based on dependence matrices and intelligent classifiers. IEEE Trans. Instrument. Measur. 69(3), 782–793 (2019)
dc.relationCanelas, A., Póvoa, R., Martins, R., Lourenço, N., Guilherme, J., Carvalho, J.P.: FUZYE: a fuzzy c-means analog IC yield optimization using evolutionary-based algorithms. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 39(1), 1–13 (2018)
dc.relationSehgal, A., Liu, F., Ozev, S., Chakrabarty, K.: Test planning for mixed-signal SOCS with wrapped analog cores. In: Design Automation and Test in Europe Conference and Exhibition, Munich, 2005, pp. 50–55. IEEE Computer Society, Munich (2005)
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourceLecture Notes in Computer Science
dc.sourcehttps://www.springerprofessional.de/en/digital-analog-converter-for-the-extraction-of-test-signals-from/19648702
dc.subjectDigital analog converter
dc.subjectSignals
dc.subjectMixed integrated circuits
dc.titleDigital analog converter for the extraction of test signals from mixed integrated circuits
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución