Mean-variance mapping optimization algorithm applied to the optimal reactive power dispatch

dc.creatorLondoño Tamayo, Daniel Camilo
dc.creatorLopez Lezama, Jesus Maria
dc.creatorVilla Acevedo, Walter Mauricio
dc.date2023-07-10T16:43:59Z
dc.date2023-07-10T16:43:59Z
dc.date2021
dc.date.accessioned2023-10-03T19:53:46Z
dc.date.available2023-10-03T19:53:46Z
dc.identifierD. Londoño Tamayo, J. López Lezama & W. Villa Acevedo, “ Mean-Variance Mapping Optimization Algorithm Applied to the Optimal Reactive Power Dispatch”, INGECUC, vol. 17. no. 1, pp. 239–255. DOI: http://doi.org/10.17981/ingecuc.17.1.2021.19
dc.identifier0122-6517
dc.identifierhttps://hdl.handle.net/11323/10314
dc.identifier10.17981/ingecuc.17.1.2021.19
dc.identifier2382-4700
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173079
dc.descriptionIntroduction— The optimal reactive power dispatch (ORPD) problem consists on finding the optimal settings of several reactive power resources in order to minimize system power losses. The ORPD is a complex combinatorial optimization problem that involves discrete and continuous variables as well as a nonlinear objective function and nonlinear constraints. Objective— This article seeks to compare the performance of the mean-variance mapping optimization (MVMO) algorithm with other techniques reported in the specialized literature applied to the ORPD solution. Methodology— Two different constraint handling approaches are implemented within the MVMO algorithm: a conventional penalization of deviations from feasible solutions and a penalization by means of a product of subfunctions that serves to identify both when a solution is optimal and feasible. Several tests are carried out in IEEE benchmark power systems of 30 and 57 buses. Conclusions— The MVMO algorithm is effective in solving the ORPD problem. Results evidence that the MVMO algorithm outperforms or matches the quality of solutions reported by several solution techniques reported in the technical literature. The alternative handling constraint proposed for the MVMO reduces the computation time and guarantees both feasibility and optimality of the solutions found.
dc.descriptionIntroducción— El problema del despacho óptimo de potencia reactiva (DOPR) consiste en encontrar la configuración óptima de diferentes recursos de potencia reactiva para minimizar las pérdidas de potencia del sistema. El DOPR es un problema complejo de optimización combinatorial que involucra variables discretas y continuas, así como una función objetivo no lineal y restricciones no lineales. Objetivo— En este artículo se busca comparar el desempeño del algoritmo de optimización de mapeo de media varianza (MVMO, por sus siglas en inglés) con otras técnicas reportadas en la literatura especializada aplicadas a la solución del DOPR. Metodología— En el algoritmo MVMO se aplican dos enfoques diferentes de manejo de restricciones: penalización convencional de las desviaciones de las soluciones factibles y penalización por medio del producto de subfunciones que sirve para identificar cuándo una solución es óptima y factible. Se realizan simulaciones en sistemas de prueba IEEE de 30 y 57 barras. Conclusiones— El algoritmo MVMO es efectivo para solucionar el DOPR. Los resultados evidencian que el algoritmo MVMO supera o iguala a varias técnicas reportadas en la literatura técnica en la calidad de soluciones. El manejo alternativo de restricciones propuesto para el MVMO reduce el tiempo de cálculo y garantiza tanto factibilidad como optimalidad de las soluciones encontradas.
dc.format17 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.publisherColombia
dc.relationINGE CUC
dc.relation[1] S. M. Mohseni-Bonab & A. Rabiee, “Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation,” IET Gener Transm Distrib, vol. 11, no. 4, pp. 815–829, Mar. 2017. https://doi.org/10.1049/ietgtd.2016.1545
dc.relation[2] R. Mota-Palomino & V. H. Quintana, “Sparse Reactive Power Scheduling by a Penalty Function - Linear Programming Technique,” IEEE Trans Power Syst, vol. 1, no. 3, pp. 31–39, Ago. 1986. https://doi. org/10.1109/TPWRS.1986.4334951
dc.relation[3] K. Aoki, M. Fan, & A. Nishikori, “Optimal VAr planning by approximation method for recursive mixedinteger linear programming,” IEEE Trans Power Syst, vol. 3, no. 4, pp. 1741–1747, Nov. 1988. https:// doi.org/10.1109/59.192990
dc.relation[4] V. H. Quintana & M. Santos-Nieto, “Reactive-power dispatch by successive quadratic programming,” IEEE Trans Energy Convers, vol. 4, no. 3, pp. 425–435, Sep. 1989. https://doi.org/10.1109/60.43245
dc.relation[5] F. C. Lu & Y. Y. Hsu, “Reactive power/voltage control in a distribution substation using dynamic programming,” Transm Distrib IEE Proc - Gener, vol. 142, no. 6, pp. 639–645, Nov. 1995. https://doi. org/10.1049/ip-gtd:19952210
dc.relation[6] S. Granville, “Optimal reactive dispatch through interior point methods,” IEEE Trans Power Syst, vol. 9, no. 1, pp. 136–146, Feb. 1994. https://doi.org/10.1109/59.317548
dc.relation[7] A. A. A. E. Ela, M. A. Abido, & S. R. Spea, “Differential evolution algorithm for optimal reactive power dispatch,” Electr Power Syst Res, vol. 81, no. 2, pp. 458–464, Feb. 2011. https://doi.org/10.1016/j. epsr.2010.10.005
dc.relation[8] A. Mukherjee & V. Mukherjee, “Solution of optimal reactive power dispatch by chaotic krill herd algorithm,” Transm Distrib IET Gener, vol. 9, no. 15, pp. 2351–2362, 2015. https://doi.org/10.1049/ietgtd.2015.0077
dc.relation[9] A. H. Gandomi & A. H. Alavi, “Krill herd: A new bio-inspired optimization algorithm,” Commun Nonlinear Sci Numer Simul, vol. 17, no. 12, pp. 4831–4845, Dic. 2012. https://doi.org/10.1016/j.cnsns.2012.05.010
dc.relation[10] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama & Y. Nakanishi, “A particle swarm optimization for reactive power and voltage control considering voltage security assessment,” presented at IEEE Power Engineering Society Winter Meeting. Conference Proceedings, Cat. No.01CH37194, COLO, USA, 2001. https://doi.org/10.1109/PESW.2001.916897
dc.relation[11] A. A. A. Esmin, G. Lambert-Torres & A. C. Zambroni de Souza, “A hybrid particle swarm optimization applied to loss power minimization,” IEEE Trans Power Syst, vol. 20, no. 2, pp. 859–866, May. 2005. https://doi.org/10.1109/TPWRS.2005.846049
dc.relation[12] D. Gutiérrez, W. M. Villa, & J. M. López-Lezama, “Flujo Óptimo Reactivo mediante Optimización por Enjambre de Partículas,” Inf Tecnol, vol. 28, no. 5, pp. 215–224, 2017. https://doi.org/10.4067/S0718- 07642017000500020
dc.relation[13] K. Mahadevan & P. S. Kannan, “Comprehensive learning particle swarm optimization for reactive power dispatch,” Appl Soft Comput, vol. 10, no. 2, pp. 641–652, Mar. 2010. https://doi.org/10.1016/j. asoc.2009.08.038
dc.relation[14] R. P. Singh, V. Mukherjee & S. P. Ghoshal, “Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers,” Appl Soft Comput, vol. 29, pp. 298–309, Apr. 2015. https://doi.org/10.1016/j.asoc.2015.01.006
dc.relation[15] S. Duman, Y. Sönmez, U. Güvenç & N. Yörükeren, “Optimal reactive power dispatch using a gravitational search algorithm,” Transm Distrib IET Gener, vol. 6, no. 6, pp. 563–576, Jun. 2012. https://doi. org/10.1049/iet-gtd.2011.0681
dc.relation[16] E. Rashedi, H. Nezamabadi-pour & S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf Sci, vol. 179, no. 13, pp. 2232–2248, Jun. 2009. https://doi.org/10.1016/j.ins.2009.03.004
dc.relation[17] G. Chen, L. Liu, Z. Zhang, & S. Huang, “Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints,” Appl Soft Comput, vol. 50, pp. 58–70, Jan. 2017. https://doi.org/10.1016/j.asoc.2016.11.008
dc.relation[18] B. Shaw, V. Mukherjee & S. P. Ghoshal, “Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm,” Int J Electr Power Energy Syst, vol. 55, pp. 29–40, Feb. 2014. https://doi.org/10.1016/j.ijepes.2013.08.010
dc.relation[19] A. Rajan & T. Malakar, “Optimal reactive power dispatch using hybrid Nelder–Mead simplex based firefly algorithm,” Int J Electr Power Energy Syst, vol. 66, pp. 9–24, Mar. 2015. https://doi.org/10.1016/j. ijepes.2014.10.041
dc.relation[20] M. Ettappan, V. Vimala, S. Ramesh & V. T. Kesavan, “Optimal reactive power dispatch for real power loss minimization and voltage stability enhancement using Artificial Bee Colony Algorithm,” Microprocess Microsyst, vol. 76, Jul. 2020. https://doi.org/10.1016/j.micpro.2020.103085
dc.relation[21] C. Dai, W. Chen, Y. Zhu, & X. Zhang, “Seeker Optimization Algorithm for Optimal Reactive Power Dispatch,” IEEE Trans Power Syst, vol. 24, no. 3, pp. 1218–1231, Aug. 2009. https://doi.org/10.1109/ TPWRS.2009.2021226
dc.relation[22] A. Bhattacharya & P. K. Chattopadhyay, “Biogeography-Based Optimization for solution of Optimal Power Flow problem,” ECTI, ECTI-CON2010, CNX, pp. 435–439, May. 2010. Available: https://ieeexplore.ieee.org/document/5491454
dc.relation[23] R. Ng Shin Mei, M. H. Sulaiman, Z. Mustaffa & H. Daniyal, “Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique,” Appl Soft Comput, vol. 59, pp. 210–222, Oct. 2017. https://doi.org/10.1016/j.asoc.2017.05.057
dc.relation[24] A. A. Heidari, R. Ali Abbaspour & A. Rezaee Jordehi, “Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems,” Appl Soft Comput, vol. 57, pp. 657–671, Aug. 2017. https://doi.org/10.1016/j.asoc.2017.04.048
dc.relation[25] D. Gutierrez Rojas, J. Lopez Lezama & W. Villa, “Metaheuristic Techniques Applied to the Optimal Reactive Power Dispatch: a Review,” IEEE Lat Am Trans, vol. 14, no. 5, pp. 2253–2263, May. 2016. https://doi.org/10.1109/TLA.2016.7530421
dc.relation[26] W. M. Villa-Acevedo, J. M. López-Lezama, & J. A. Valencia-Velásquez, “A Novel Constraint Handling Approach for the Optimal Reactive Power Dispatch Problem,” Energies, vol. 11, no. 9, pp. 1–23, 2018. https://doi.org/10.3390/en11092352
dc.relation[27] I. Erlich, G. K. Venayagamoorthy & N. Worawat, “A Mean-Variance Optimization algorithm,” presented at IEEE CEC, CEC, BCN, pp. 1–6, 18-23 Jul. 2010. https://doi.org/10.1109/CEC.2010.5586027
dc.relation[28] I. Erlich, “Mean-variance mapping optimization algorithm home page,” UDE, 2018. Available: https:// www.uni-due.de/mvmo/
dc.relation[29] J. L. Rueda & I. Erlich, “Optimal dispatch of reactive power sources by using MVMOs optimization,” presented at IEEE CIASG, CIASG, SG, 16-19 Apr. 2013. https://doi.org/10.1109/CIASG.2013.6611495
dc.relation[30] J. C. Cepeda, J. L. Rueda & I. Erlich, “Identification of dynamic equivalents based on heuristic optimization for smart grid applications,” IEEE CEC, CEC, Bris, QLD, AU, 10-15 Jun. 2012. https://doi. org/10.1109/CEC.2012.6256493
dc.relation[31] J. L. Rueda & I. Erlich, “Evaluation of the mean-variance mapping optimization for solving multimodal problems,” IEEE SIS, SIS, SG, 16-19 Apr. 2013. https://doi.org/10.1109/SIS.2013.6615153
dc.relation255
dc.relation239
dc.relation1
dc.relation17
dc.rightsDerechos de autor 2021 INGE CUC
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/3109
dc.subjectReactive power
dc.subjectMetaheuristic techniques
dc.subjectPower loss minimization
dc.subjectConstraint handling
dc.subjectMean-variance mapping optimization
dc.subjectPotencia reactiva
dc.subjectTécnicas metaheurísticas
dc.subjectMinimización de pérdidas
dc.subjectManejo de restricciones
dc.subjectOptimización de mapeo de media-varianza
dc.titleAlgoritmo de optimización de mapeo de media varianza aplicado al despacho óptimo de potencia reactiva
dc.titleMean-variance mapping optimization algorithm applied to the optimal reactive power dispatch
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución