Algoritmo de optimización de mapeo de media varianza aplicado al despacho óptimo de potencia reactiva
Mean-variance mapping optimization algorithm applied to the optimal reactive power dispatch
dc.creator | Londoño Tamayo, Daniel Camilo | |
dc.creator | Lopez Lezama, Jesus Maria | |
dc.creator | Villa Acevedo, Walter Mauricio | |
dc.date | 2023-07-10T16:43:59Z | |
dc.date | 2023-07-10T16:43:59Z | |
dc.date | 2021 | |
dc.date.accessioned | 2023-10-03T19:53:46Z | |
dc.date.available | 2023-10-03T19:53:46Z | |
dc.identifier | D. Londoño Tamayo, J. López Lezama & W. Villa Acevedo, “ Mean-Variance Mapping Optimization Algorithm Applied to the Optimal Reactive Power Dispatch”, INGECUC, vol. 17. no. 1, pp. 239–255. DOI: http://doi.org/10.17981/ingecuc.17.1.2021.19 | |
dc.identifier | 0122-6517 | |
dc.identifier | https://hdl.handle.net/11323/10314 | |
dc.identifier | 10.17981/ingecuc.17.1.2021.19 | |
dc.identifier | 2382-4700 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9173079 | |
dc.description | Introduction— The optimal reactive power dispatch (ORPD) problem consists on finding the optimal settings of several reactive power resources in order to minimize system power losses. The ORPD is a complex combinatorial optimization problem that involves discrete and continuous variables as well as a nonlinear objective function and nonlinear constraints. Objective— This article seeks to compare the performance of the mean-variance mapping optimization (MVMO) algorithm with other techniques reported in the specialized literature applied to the ORPD solution. Methodology— Two different constraint handling approaches are implemented within the MVMO algorithm: a conventional penalization of deviations from feasible solutions and a penalization by means of a product of subfunctions that serves to identify both when a solution is optimal and feasible. Several tests are carried out in IEEE benchmark power systems of 30 and 57 buses. Conclusions— The MVMO algorithm is effective in solving the ORPD problem. Results evidence that the MVMO algorithm outperforms or matches the quality of solutions reported by several solution techniques reported in the technical literature. The alternative handling constraint proposed for the MVMO reduces the computation time and guarantees both feasibility and optimality of the solutions found. | |
dc.description | Introducción— El problema del despacho óptimo de potencia reactiva (DOPR) consiste en encontrar la configuración óptima de diferentes recursos de potencia reactiva para minimizar las pérdidas de potencia del sistema. El DOPR es un problema complejo de optimización combinatorial que involucra variables discretas y continuas, así como una función objetivo no lineal y restricciones no lineales. Objetivo— En este artículo se busca comparar el desempeño del algoritmo de optimización de mapeo de media varianza (MVMO, por sus siglas en inglés) con otras técnicas reportadas en la literatura especializada aplicadas a la solución del DOPR. Metodología— En el algoritmo MVMO se aplican dos enfoques diferentes de manejo de restricciones: penalización convencional de las desviaciones de las soluciones factibles y penalización por medio del producto de subfunciones que sirve para identificar cuándo una solución es óptima y factible. Se realizan simulaciones en sistemas de prueba IEEE de 30 y 57 barras. Conclusiones— El algoritmo MVMO es efectivo para solucionar el DOPR. Los resultados evidencian que el algoritmo MVMO supera o iguala a varias técnicas reportadas en la literatura técnica en la calidad de soluciones. El manejo alternativo de restricciones propuesto para el MVMO reduce el tiempo de cálculo y garantiza tanto factibilidad como optimalidad de las soluciones encontradas. | |
dc.format | 17 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Corporación Universidad de la Costa | |
dc.publisher | Colombia | |
dc.relation | INGE CUC | |
dc.relation | [1] S. M. Mohseni-Bonab & A. Rabiee, “Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation,” IET Gener Transm Distrib, vol. 11, no. 4, pp. 815–829, Mar. 2017. https://doi.org/10.1049/ietgtd.2016.1545 | |
dc.relation | [2] R. Mota-Palomino & V. H. Quintana, “Sparse Reactive Power Scheduling by a Penalty Function - Linear Programming Technique,” IEEE Trans Power Syst, vol. 1, no. 3, pp. 31–39, Ago. 1986. https://doi. org/10.1109/TPWRS.1986.4334951 | |
dc.relation | [3] K. Aoki, M. Fan, & A. Nishikori, “Optimal VAr planning by approximation method for recursive mixedinteger linear programming,” IEEE Trans Power Syst, vol. 3, no. 4, pp. 1741–1747, Nov. 1988. https:// doi.org/10.1109/59.192990 | |
dc.relation | [4] V. H. Quintana & M. Santos-Nieto, “Reactive-power dispatch by successive quadratic programming,” IEEE Trans Energy Convers, vol. 4, no. 3, pp. 425–435, Sep. 1989. https://doi.org/10.1109/60.43245 | |
dc.relation | [5] F. C. Lu & Y. Y. Hsu, “Reactive power/voltage control in a distribution substation using dynamic programming,” Transm Distrib IEE Proc - Gener, vol. 142, no. 6, pp. 639–645, Nov. 1995. https://doi. org/10.1049/ip-gtd:19952210 | |
dc.relation | [6] S. Granville, “Optimal reactive dispatch through interior point methods,” IEEE Trans Power Syst, vol. 9, no. 1, pp. 136–146, Feb. 1994. https://doi.org/10.1109/59.317548 | |
dc.relation | [7] A. A. A. E. Ela, M. A. Abido, & S. R. Spea, “Differential evolution algorithm for optimal reactive power dispatch,” Electr Power Syst Res, vol. 81, no. 2, pp. 458–464, Feb. 2011. https://doi.org/10.1016/j. epsr.2010.10.005 | |
dc.relation | [8] A. Mukherjee & V. Mukherjee, “Solution of optimal reactive power dispatch by chaotic krill herd algorithm,” Transm Distrib IET Gener, vol. 9, no. 15, pp. 2351–2362, 2015. https://doi.org/10.1049/ietgtd.2015.0077 | |
dc.relation | [9] A. H. Gandomi & A. H. Alavi, “Krill herd: A new bio-inspired optimization algorithm,” Commun Nonlinear Sci Numer Simul, vol. 17, no. 12, pp. 4831–4845, Dic. 2012. https://doi.org/10.1016/j.cnsns.2012.05.010 | |
dc.relation | [10] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama & Y. Nakanishi, “A particle swarm optimization for reactive power and voltage control considering voltage security assessment,” presented at IEEE Power Engineering Society Winter Meeting. Conference Proceedings, Cat. No.01CH37194, COLO, USA, 2001. https://doi.org/10.1109/PESW.2001.916897 | |
dc.relation | [11] A. A. A. Esmin, G. Lambert-Torres & A. C. Zambroni de Souza, “A hybrid particle swarm optimization applied to loss power minimization,” IEEE Trans Power Syst, vol. 20, no. 2, pp. 859–866, May. 2005. https://doi.org/10.1109/TPWRS.2005.846049 | |
dc.relation | [12] D. Gutiérrez, W. M. Villa, & J. M. López-Lezama, “Flujo Óptimo Reactivo mediante Optimización por Enjambre de Partículas,” Inf Tecnol, vol. 28, no. 5, pp. 215–224, 2017. https://doi.org/10.4067/S0718- 07642017000500020 | |
dc.relation | [13] K. Mahadevan & P. S. Kannan, “Comprehensive learning particle swarm optimization for reactive power dispatch,” Appl Soft Comput, vol. 10, no. 2, pp. 641–652, Mar. 2010. https://doi.org/10.1016/j. asoc.2009.08.038 | |
dc.relation | [14] R. P. Singh, V. Mukherjee & S. P. Ghoshal, “Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers,” Appl Soft Comput, vol. 29, pp. 298–309, Apr. 2015. https://doi.org/10.1016/j.asoc.2015.01.006 | |
dc.relation | [15] S. Duman, Y. Sönmez, U. Güvenç & N. Yörükeren, “Optimal reactive power dispatch using a gravitational search algorithm,” Transm Distrib IET Gener, vol. 6, no. 6, pp. 563–576, Jun. 2012. https://doi. org/10.1049/iet-gtd.2011.0681 | |
dc.relation | [16] E. Rashedi, H. Nezamabadi-pour & S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf Sci, vol. 179, no. 13, pp. 2232–2248, Jun. 2009. https://doi.org/10.1016/j.ins.2009.03.004 | |
dc.relation | [17] G. Chen, L. Liu, Z. Zhang, & S. Huang, “Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints,” Appl Soft Comput, vol. 50, pp. 58–70, Jan. 2017. https://doi.org/10.1016/j.asoc.2016.11.008 | |
dc.relation | [18] B. Shaw, V. Mukherjee & S. P. Ghoshal, “Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm,” Int J Electr Power Energy Syst, vol. 55, pp. 29–40, Feb. 2014. https://doi.org/10.1016/j.ijepes.2013.08.010 | |
dc.relation | [19] A. Rajan & T. Malakar, “Optimal reactive power dispatch using hybrid Nelder–Mead simplex based firefly algorithm,” Int J Electr Power Energy Syst, vol. 66, pp. 9–24, Mar. 2015. https://doi.org/10.1016/j. ijepes.2014.10.041 | |
dc.relation | [20] M. Ettappan, V. Vimala, S. Ramesh & V. T. Kesavan, “Optimal reactive power dispatch for real power loss minimization and voltage stability enhancement using Artificial Bee Colony Algorithm,” Microprocess Microsyst, vol. 76, Jul. 2020. https://doi.org/10.1016/j.micpro.2020.103085 | |
dc.relation | [21] C. Dai, W. Chen, Y. Zhu, & X. Zhang, “Seeker Optimization Algorithm for Optimal Reactive Power Dispatch,” IEEE Trans Power Syst, vol. 24, no. 3, pp. 1218–1231, Aug. 2009. https://doi.org/10.1109/ TPWRS.2009.2021226 | |
dc.relation | [22] A. Bhattacharya & P. K. Chattopadhyay, “Biogeography-Based Optimization for solution of Optimal Power Flow problem,” ECTI, ECTI-CON2010, CNX, pp. 435–439, May. 2010. Available: https://ieeexplore.ieee.org/document/5491454 | |
dc.relation | [23] R. Ng Shin Mei, M. H. Sulaiman, Z. Mustaffa & H. Daniyal, “Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique,” Appl Soft Comput, vol. 59, pp. 210–222, Oct. 2017. https://doi.org/10.1016/j.asoc.2017.05.057 | |
dc.relation | [24] A. A. Heidari, R. Ali Abbaspour & A. Rezaee Jordehi, “Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems,” Appl Soft Comput, vol. 57, pp. 657–671, Aug. 2017. https://doi.org/10.1016/j.asoc.2017.04.048 | |
dc.relation | [25] D. Gutierrez Rojas, J. Lopez Lezama & W. Villa, “Metaheuristic Techniques Applied to the Optimal Reactive Power Dispatch: a Review,” IEEE Lat Am Trans, vol. 14, no. 5, pp. 2253–2263, May. 2016. https://doi.org/10.1109/TLA.2016.7530421 | |
dc.relation | [26] W. M. Villa-Acevedo, J. M. López-Lezama, & J. A. Valencia-Velásquez, “A Novel Constraint Handling Approach for the Optimal Reactive Power Dispatch Problem,” Energies, vol. 11, no. 9, pp. 1–23, 2018. https://doi.org/10.3390/en11092352 | |
dc.relation | [27] I. Erlich, G. K. Venayagamoorthy & N. Worawat, “A Mean-Variance Optimization algorithm,” presented at IEEE CEC, CEC, BCN, pp. 1–6, 18-23 Jul. 2010. https://doi.org/10.1109/CEC.2010.5586027 | |
dc.relation | [28] I. Erlich, “Mean-variance mapping optimization algorithm home page,” UDE, 2018. Available: https:// www.uni-due.de/mvmo/ | |
dc.relation | [29] J. L. Rueda & I. Erlich, “Optimal dispatch of reactive power sources by using MVMOs optimization,” presented at IEEE CIASG, CIASG, SG, 16-19 Apr. 2013. https://doi.org/10.1109/CIASG.2013.6611495 | |
dc.relation | [30] J. C. Cepeda, J. L. Rueda & I. Erlich, “Identification of dynamic equivalents based on heuristic optimization for smart grid applications,” IEEE CEC, CEC, Bris, QLD, AU, 10-15 Jun. 2012. https://doi. org/10.1109/CEC.2012.6256493 | |
dc.relation | [31] J. L. Rueda & I. Erlich, “Evaluation of the mean-variance mapping optimization for solving multimodal problems,” IEEE SIS, SIS, SG, 16-19 Apr. 2013. https://doi.org/10.1109/SIS.2013.6615153 | |
dc.relation | 255 | |
dc.relation | 239 | |
dc.relation | 1 | |
dc.relation | 17 | |
dc.rights | Derechos de autor 2021 INGE CUC | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://revistascientificas.cuc.edu.co/ingecuc/article/view/3109 | |
dc.subject | Reactive power | |
dc.subject | Metaheuristic techniques | |
dc.subject | Power loss minimization | |
dc.subject | Constraint handling | |
dc.subject | Mean-variance mapping optimization | |
dc.subject | Potencia reactiva | |
dc.subject | Técnicas metaheurísticas | |
dc.subject | Minimización de pérdidas | |
dc.subject | Manejo de restricciones | |
dc.subject | Optimización de mapeo de media-varianza | |
dc.title | Algoritmo de optimización de mapeo de media varianza aplicado al despacho óptimo de potencia reactiva | |
dc.title | Mean-variance mapping optimization algorithm applied to the optimal reactive power dispatch | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 |