dc.creatorsilva d, jesus g
dc.creatorSenior Naveda, Alexa
dc.creatorHernández Palma, Hugo
dc.creatorNiebles Núñez, William
dc.creatorNiebles Nuñez, Leonardo David
dc.date2020-01-30T13:38:21Z
dc.date2020-01-30T13:38:21Z
dc.date2020
dc.date.accessioned2023-10-03T19:53:31Z
dc.date.available2023-10-03T19:53:31Z
dc.identifier1742-6596
dc.identifier1742-6588
dc.identifierhttp://hdl.handle.net/11323/5947
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173033
dc.descriptionIn the new global and local scenario, the advent of intelligent distribution networks or Smart Grids allows real-time collection of data on the operating status of the electricity grid. Based on this availability of data, it is feasible and convenient to predict consumption in the short term, from a few hours to a week. The hypothesis of the study is that the method used to present time variables to a prediction system of electricity consumption affects the results.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherJournal of Physics: Conference Series
dc.relation10.1088/1742-6596/1432/1/012033/pdf
dc.relation[1] R. Sevlian and R. Rajagopal, “Short Term Electricity Load Forecasting on Varying Levels of Aggregation,” ArXivPrepr.ArXiv14040058, 2014.
dc.relation[2] Z. Y. Wang, C. X. Guo, and Y. J. Cao, “A new method for short-term load forecasting integrating fuzzy-rough sets with artificial neural network,” in Power Engineering Conference, 2005. IPEC 2005. The 7th International, 2005, pp. 1–173.
dc.relation[3] I. Drezga and S. Rahman, “Input variable selection for ANN-based short-term load forecasting,” IEEE Trans. Power Syst., vol. 13, no. 4, pp. 1238–1244, Nov. 1998.
dc.relation[4] Y.-C. Guo, “An integrated PSO for parameter determination and feature selection of SVR and its application in STLF,” in 2009 International Conference on Machine Learning and Cybernetics, 2009, vol. 1, pp. 359–364.
dc.relation[5] Abdul Masud, M., Zhexue Huang, J., Wei, C., Wang, J., Khan, I., Zhong, M.: Inice: A New Approach for Identifying the Number of Clusters and Initial Cluster Centres. Inf. Sci. (2018). https://doi.org/10.1016/j.ins.2018.07.034
dc.relation[6] Martins, L.; Carvalho, R.; Victorino, C.; Holanda, M.: Early Prediction of College Attrition Using Data Mining. 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1075-1078 (2017)
dc.relation[7] IHOBE. (1999). Guía de Indicadores Medioambientales para la Empresa. Berlin: Ministerio Federal para el Medio Ambiente, la Conservación de la Naturaleza y la Seguridad Nuclear.
dc.relation[8] Russell, S.; Norvig, P.: Artificial Intelligence A Modern Approach. Pearson Education 3rd Ed, pp. 705 (2010)
dc.relation[9] Makhabel, B.: Learning Data Mining with R. Packt Publishing 1st Ed, pp. 143 (2015)
dc.relation[10] Witten, I.; Frank, E.; Hall, M.; Pal, C.: Data Mining Practical Machine Learning Tools and Techniques. Elsevier 4th Ed, pp. 167-169 (2016).
dc.relation[11] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. (2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data (pp. 149-158). Springer, Cham.
dc.relation[12] Gaitán-Angulo, M., Viloria, A., & Abril, J. E. S. (2018, June). Hierarchical Ascending Classification: An Application to Contraband Apprehensions in Colombia (2015–2016). In Data Mining and Big Data: Third International Conference, DMBD 2018, Shanghai, China, June 17– 22, 2018, Proceedings (Vol. 10943, p. 168). Springer.
dc.relation[13] Sanchez L., Vásquez C., Viloria A., Cmeza-estrada (2018) Conglomerates of Latin American Countries and Public Policies for the Sustainable Development of the Electric Power Generation Sector. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham.
dc.relation[14] Perez, R., Inga, E., Aguila, A., Vásquez, C., Lima, L., Viloria, A., & Henry, M. A. (2018, June). Fault diagnosis on electrical distribution systems based on fuzzy logic. In International Conference on Sensing and Imaging (pp. 174-185). Springer, Cham.
dc.relation[15] Perez, Ramón, Carmen Vásquez, and Amelec Viloria. "An intelligent strategy for faults location in distribution networks with distributed generation." Journal of Intelligent & Fuzzy Systems Preprint (2019): 1-11.
dc.relation[16] Chakraborty, S., Das, S.: Simultaneous variable weighting and determining the number of clusters—A weighted Gaussian algorithm means. Stat. Probab. Lett. 137, 148–156 (2018). https://doi.org/10.1016/j.spl.2018.01.015
dc.relation[17] Bishop, C. (1995). Extremely well-written, up-to-date. Requires a good mathematical background, but rewards careful reading, putting neural networks firmly into a statistical context. Neural Networks for Pattern Recognition.
dc.relation[18] Pretnar, A. The Mystery of Test & Score. Ljubljana: University of Ljubljana. Retrieved from: https://orange.biolab.si/blog/2019/1/28/the-mystery-of-test-and-score/ (2019).
dc.relation[19] Castellanos Domíngez, M. I., Quevedo Castro, C. M., Vega Ramírez, A., Grangel González, I., & Moreno Rodríguez, R. (2016). Sistema basado en ontología para el apoyo a la toma de decisiones en el proceso de gestión ambiental empresarial. Paper presented at the II International Workshop of Semantic Web, La Habana, Cuba. http://ceur-ws.org/Vol-1797/
dc.relation[20] Yasser, A. M., Clawson, K., & Bowerman, C.: Saving cultural heritage with digital make-believe: machine learning and digital techniques to the rescue. In Proceedings of the 31st British Computer Society Human Computer Interaction Conference (p. 97). BCS Learning & Development Ltd. (2017).
dc.relation[21] Khelifi, F. J., J. (2011). K-NN Regression to Improve Statistical Feature Extraction for Texture Retrieval. IEEE Transactions on Image Processing, 20, 293-298.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectElectricity
dc.subjectTemporary Variables
dc.subjectData mining
dc.titleTemporary variables for predicting electricity consumption through data mining
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución