dc.creator | silva d, jesus g | |
dc.creator | Senior Naveda, Alexa | |
dc.creator | Hernández Palma, Hugo | |
dc.creator | Niebles Núñez, William | |
dc.creator | Niebles Nuñez, Leonardo David | |
dc.date | 2020-01-30T13:38:21Z | |
dc.date | 2020-01-30T13:38:21Z | |
dc.date | 2020 | |
dc.date.accessioned | 2023-10-03T19:53:31Z | |
dc.date.available | 2023-10-03T19:53:31Z | |
dc.identifier | 1742-6596 | |
dc.identifier | 1742-6588 | |
dc.identifier | http://hdl.handle.net/11323/5947 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9173033 | |
dc.description | In the new global and local scenario, the advent of intelligent distribution networks
or Smart Grids allows real-time collection of data on the operating status of the electricity grid.
Based on this availability of data, it is feasible and convenient to predict consumption in the short
term, from a few hours to a week. The hypothesis of the study is that the method used to present
time variables to a prediction system of electricity consumption affects the results. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Journal of Physics: Conference Series | |
dc.relation | 10.1088/1742-6596/1432/1/012033/pdf | |
dc.relation | [1] R. Sevlian and R. Rajagopal, “Short Term Electricity Load Forecasting on Varying Levels of
Aggregation,” ArXivPrepr.ArXiv14040058, 2014. | |
dc.relation | [2] Z. Y. Wang, C. X. Guo, and Y. J. Cao, “A new method for short-term load forecasting integrating
fuzzy-rough sets with artificial neural network,” in Power Engineering Conference, 2005. IPEC
2005. The 7th International, 2005, pp. 1–173. | |
dc.relation | [3] I. Drezga and S. Rahman, “Input variable selection for ANN-based short-term load forecasting,”
IEEE Trans. Power Syst., vol. 13, no. 4, pp. 1238–1244, Nov. 1998. | |
dc.relation | [4] Y.-C. Guo, “An integrated PSO for parameter determination and feature selection of SVR and its
application in STLF,” in 2009 International Conference on Machine Learning and Cybernetics,
2009, vol. 1, pp. 359–364. | |
dc.relation | [5] Abdul Masud, M., Zhexue Huang, J., Wei, C., Wang, J., Khan, I., Zhong, M.: Inice: A New
Approach for Identifying the Number of Clusters and Initial Cluster Centres. Inf. Sci. (2018).
https://doi.org/10.1016/j.ins.2018.07.034 | |
dc.relation | [6] Martins, L.; Carvalho, R.; Victorino, C.; Holanda, M.: Early Prediction of College Attrition Using
Data Mining. 16th IEEE International Conference on Machine Learning and Applications
(ICMLA), pp. 1075-1078 (2017) | |
dc.relation | [7] IHOBE. (1999). Guía de Indicadores Medioambientales para la Empresa. Berlin: Ministerio
Federal para el Medio Ambiente, la Conservación de la Naturaleza y la Seguridad Nuclear. | |
dc.relation | [8] Russell, S.; Norvig, P.: Artificial Intelligence A Modern Approach. Pearson Education 3rd Ed,
pp. 705 (2010) | |
dc.relation | [9] Makhabel, B.: Learning Data Mining with R. Packt Publishing 1st Ed, pp. 143 (2015) | |
dc.relation | [10] Witten, I.; Frank, E.; Hall, M.; Pal, C.: Data Mining Practical Machine Learning Tools and
Techniques. Elsevier 4th Ed, pp. 167-169 (2016). | |
dc.relation | [11] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. (2018,
June). Factor analysis of the psychosocial risk assessment instrument. In International Conference
on Data Mining and Big Data (pp. 149-158). Springer, Cham. | |
dc.relation | [12] Gaitán-Angulo, M., Viloria, A., & Abril, J. E. S. (2018, June). Hierarchical Ascending
Classification: An Application to Contraband Apprehensions in Colombia (2015–2016). In Data
Mining and Big Data: Third International Conference, DMBD 2018, Shanghai, China, June 17–
22, 2018, Proceedings (Vol. 10943, p. 168). Springer. | |
dc.relation | [13] Sanchez L., Vásquez C., Viloria A., Cmeza-estrada (2018) Conglomerates of Latin American
Countries and Public Policies for the Sustainable Development of the Electric Power Generation
Sector. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes
in Computer Science, vol 10943. Springer, Cham. | |
dc.relation | [14] Perez, R., Inga, E., Aguila, A., Vásquez, C., Lima, L., Viloria, A., & Henry, M. A. (2018, June).
Fault diagnosis on electrical distribution systems based on fuzzy logic. In International
Conference on Sensing and Imaging (pp. 174-185). Springer, Cham. | |
dc.relation | [15] Perez, Ramón, Carmen Vásquez, and Amelec Viloria. "An intelligent strategy for faults location
in distribution networks with distributed generation." Journal of Intelligent & Fuzzy Systems
Preprint (2019): 1-11. | |
dc.relation | [16] Chakraborty, S., Das, S.: Simultaneous variable weighting and determining the number of
clusters—A weighted Gaussian algorithm means. Stat. Probab. Lett. 137, 148–156 (2018).
https://doi.org/10.1016/j.spl.2018.01.015 | |
dc.relation | [17] Bishop, C. (1995). Extremely well-written, up-to-date. Requires a good mathematical
background, but rewards careful reading, putting neural networks firmly into a statistical context.
Neural Networks for Pattern Recognition. | |
dc.relation | [18] Pretnar, A. The Mystery of Test & Score. Ljubljana: University of Ljubljana. Retrieved from:
https://orange.biolab.si/blog/2019/1/28/the-mystery-of-test-and-score/ (2019). | |
dc.relation | [19] Castellanos Domíngez, M. I., Quevedo Castro, C. M., Vega Ramírez, A., Grangel González, I.,
& Moreno Rodríguez, R. (2016). Sistema basado en ontología para el apoyo a la toma de
decisiones en el proceso de gestión ambiental empresarial. Paper presented at the II International
Workshop of Semantic Web, La Habana, Cuba. http://ceur-ws.org/Vol-1797/ | |
dc.relation | [20] Yasser, A. M., Clawson, K., & Bowerman, C.: Saving cultural heritage with digital make-believe:
machine learning and digital techniques to the rescue. In Proceedings of the 31st British Computer
Society Human Computer Interaction Conference (p. 97). BCS Learning & Development Ltd.
(2017). | |
dc.relation | [21] Khelifi, F. J., J. (2011). K-NN Regression to Improve Statistical Feature Extraction for Texture
Retrieval. IEEE Transactions on Image Processing, 20, 293-298. | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | Electricity | |
dc.subject | Temporary Variables | |
dc.subject | Data mining | |
dc.title | Temporary variables for predicting electricity consumption through data mining | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |