Structural health monitoring baseline of Gómez Ortiz bridge using ambient vibration tests

dc.creatorViviescas Jaimes, Alvaro
dc.creatorCarrillo, Julián
dc.creatorVargas Carvajal, Laura Andrea
dc.date2019-02-12T21:17:29Z
dc.date2019-02-12T21:17:29Z
dc.date2018-01-01
dc.date.accessioned2023-10-03T19:53:30Z
dc.date.available2023-10-03T19:53:30Z
dc.identifierViviescas, J. Carrilllo y L. A. Vargas, “Línea base para monitoreo de salud estructural del puente Gómez Ortiz a partir de pruebas de vibración ambiental”, INGE CUC, vol. 14, no. 1, pp. 52-65, 2018 DOI: http://doi.org/10.17981/ingecuc.14.1.2018.05
dc.identifierhttp://hdl.handle.net/11323/2422
dc.identifierhttps://doi.org/10.17981/ingecuc.14.1.2018.05
dc.identifier10.17981/ingecuc.14.1.2018.05
dc.identifier2382-4700
dc.identifierCorporación Universidad de la Costa
dc.identifier0122-6517
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173028
dc.descriptionIntroducción: En los últimos años, en Colombia hay un crecimiento en la construcción de puentes de grandes luces, en especial tipo viga cajón. Por la importancia de estas estructuras en la infraestructura del país, surge la necesidad de monitorear su integridad estructural, analizar su comportamiento a través de su ciclo de vida, detectar cambios causados por posibles daños y establecer planes de mantenimiento. Este monitoreo se puede realizar a través de la caracterización de las propiedades dinámicas de la estructura. Objetivo: Este estudio presenta los resultados de la línea base para el monitoreo de la salud estructural del puente Gómez Ortiz. El artículo presenta y discute los resultados de la caracterización dinámica de la estructura y se describe el proceso de ajuste de un modelo numérico con base en los resultados experimentales. Metodología: La caracterización dinámica se realizó utilizando la técnica experimental con medición de vibraciones ambientales. Para el procesamiento de datos se utilizaron cuatro técnicas diferentes, tales como selección de picos (PP), descomposición en el dominio de la frecuencia (FDD), descomposición en el dominio de la frecuencia mejorada (EFDD) e identificación del sub-espacio estocástico (SSI). Resultados: En el estudio se obtuvo información experimental de las propiedades dinámicas del puente, tales como frecuencias fundamentales, modos de vibración y fracciones de amortiguamiento. Conclusiones: Los resultados demostraron que las cuatro técnicas arrojan resultados similares, excepto para las fracciones de amortiguamiento, confirmando la incertidumbre de las técnicas experimentales para definir este parámetro.
dc.descriptionIntroduction− The construction of long-span bridges, especially box girder type, has been increasing in recent years in Colombia. Due to the importance that these structures represent for the infrastructure of the coun-try, there is a need to monitor their structural integrity to analyze their behavior throughout their life cycle, de-tect changes caused by possible damages and establish maintenance plans. This monitoring can be carried out through the characterization of the dynamic properties of the structure.Objective−This study shows the results of the structural health monitoring baseline carried out in the Gómez Ortiz bridge. The dynamic characterization of the structure is performed and discussed, as well as the process of adjust-ing a numerical model based on the experimental results. Methodology−The dynamic characterization of the structure was carried out using the experimental tech-nique based on ambient vibration tests. Four different techniques were used to post-processing the data ob-tained in these tests such as Peak Picking (PP), Frequen-cy Domain Decomposition (FDD), Enhanced Frequency Domain Decomposition (EFDD), and the Stochastic Sub-space Identification (SSI). Results− Experimental information of the dynamic prop-erties of the bridge was obtained in the study, such as fun-damental frequencies, modal shapes, and damping ratios. Conclusions−The results of the study demonstrated that the four techniques show similar results, except for damping ratios, which confirms the uncertainty of the ex-perimental techniques to define this parameter.
dc.format14 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.relationINGE CUC; Vol. 14, Núm. 1 (2018)
dc.relationINGE CUC
dc.relationINGE CUC
dc.relation[1] H. Sohn, C. R. Farrar, F. Hemez y J. Czarnecki, “A Review of Structural Health Monitoring Literature 1996 – 2001,” Third World Conf. Struct. Control, no. December, pp. 1–7, 2002.
dc.relation[2] A. Cury, C. Cremona y J. Dumoulin, “Long-term monitoring of a PSC box girder bridge: Operational modal analysis, data normalization and structural modification assessment,” Mech. Syst. Signal Process., vol. 33, pp. 13–37, nov. 2012. https://doi.org/10.1016/j.ymssp.2012.07.005
dc.relation[3] K. A. Kvåle, O. Øiseth y A. Rønnquist, “Operational modal analysis of an end-supported pontoon bridge,” Eng. Struct., vol. 148, pp. 410–423, oct. 2017. https://doi.org/10.1016/j.engstruct.2017.06.069
dc.relation[4] R. M. Azzara, A. De Falco, M. Girardi y D. Pellegrini, “Ambient vibration recording on the Maddalena Bridge in Borgo a Mozzano (Italy): data analysis,” Ann. Geophys., vol. 60, no. 4 VO - 60, 2017.
dc.relation[5] O. García Domínguez, A. G. Milián, Ayala, R. Reyes Greco y C. Álvarez Guillén, “Modelo estructural y medición de vibraciones dinámicas del puente ‘Fernando Espinosa’,” in XIII Congreso Nacional de Ingeniería Estructural, 2002, no. 55, pp. 849–860.
dc.relation[6] P. Thomson, J. Marulanda C y J. Marulanda A, “Monitoreo de Salud Estructural,” Ing. y Compet., vol. 2, no. 2, pp. 40–46, 2000.
dc.relation[7] E. Muñoz, F. Núñez, J. A. Rodríguez, A. Ramos, C. Otálora y P. Universidad, “Vulnerabilidad sísmica y capacidad de carga de un puente en acero basado en confiabilidad estructural. Seismic vulnerability and load carrying capacity studies of a steel bridge based on structural reliability,” Rev. Ing. Construcción, vol. 23, pp. 125–144, 2008.
dc.relation[8] P. Thomson y J. Marulanda, “Sistema de MSE del Viaducto Pereira-Dos Quebradas,” in IV Semana de la Ingeniería, 2005.
dc.relation[9] J. Marulanda, P. Thomson, J. M. Caicedo, S. J. Dyke y A. Orozco, “Implementation of a Modal Identification Methodology on the Pereira-Dos Quebradas Cable-Stayed Bridge,” in 16th ASCE Engineering Mechanics Conference, 2003, pp. 1–11.
dc.relation[10] W. J. Carrillo León, “Estimación de los periodos naturales de vibración de viviendas de baja altura con muros de concreto,” Cienc. e Ing. Neogranadina, vol. 19, pp. 39–54, 2009. https://doi.org/10.18359/rcin.309
dc.relation[11] J. Carrillo y S. M. Alcocer, “Simplified equation for estimating periods of vibration of concrete wall housing,” Eng. Struct., vol. 52, pp. 446–454, 2013. https://doi.org/10.1016/j.engstruct.2013.03.011
dc.relation[12] P. Omenzette et al., “Forced and Ambient Vibration Testing of Full Scale Bridges,” Earthq. Comm. Res. Found., no. oct., 2013-2014.
dc.relation[13] C. P. Lamarche, S. Mousseau, P. Paultre y J. Proulx, “A comparison of Ambient and Forced-Vibration Testing of a Full-Scale Concrete Structure,” in 22nd International Modal Analysis Conference IMA-XXII, 2004.
dc.relation[14] S. Au, Operational Modal Analysis. Singapore: Springer Nature, 2017. https://doi.org/10.1007/978-981-10-4118-1
dc.relation[15] I. Gómez Araujo, E. Maldonado Rondón y G. Chio Cho, “Pruebas de Vibración Ambiental en Puentes,” UIS Ing., vol. 9, no. 1, pp. 55–68, 2010.
dc.relation[16] INGETEC, “Planos ‘As Built’ Puente Guillermo Gómez Ortiz,” Santander, Colombia, 2014.
dc.relation[17] J. Bien, “Modelling of structure geometry in Bridge Management Systems,” Arch. Civ. Mech. Eng., vol. XI, no. 3, 2011.
dc.relation[18] M. C. Corredor y C. Castellanos, “Calibración del modelo numérico de puentes viga cajón en concreto, utilizando ensayos de vibración ambiental. Caso de estudio: Nuevo Puente Gómez Ortiz. Bucaramanga,” 2015.
dc.relation[19] MIDAS Information Technology Co Ltda, “Online manual. Civil Structure Design,” 2015.
dc.relation[20] C. C. Rangel y J. A. Silva de Carvalho, “Evaluación del impacto de las alteraciones climáticas en un puente de concreto preesforzado,” 2016.
dc.relation[21] W. Kornkassem, D. A. Foutch y J. H. Long, “Seismic Behaviour of Pile-Supported Bridges,” p. 275, University of Illinois at Urbana-Champaign, 2001.
dc.relation[22] W. X. Ren, W. Zatar y I. E. Harik, “Ambient vibrationbased seismic evaluation of a continuous girder bridge,” Eng. Struct., vol. 26, no. 5, pp. 631–640, 2004.
dc.relation[23] L. A. Vargas Carvajal, “Propuesta de plan de monitoreo del comportamiento dinámico para la salud estructural del nuevo puente Gómez Ortiz en la vía Girón-Zapatoca,” Universidad Industrial de Santander, 2016.
dc.relation[24] A. Dall Asta y L. Dezi, “Prestress Force Effect on Vibration Frequency of Concrete Bridges,” J. Struct. Eng., pp. 458–460, 1996.
dc.relation[25] E. Hamed y Y. Ã. Frostig, “Natural frequencies of bonded and unbonded prestressed beams – prestress force effects,” J. Sound Vib., vol. 295, pp. 28–39, 2006.
dc.relation[26] Structural vibration solutions, “ARTeMIS,” Denmark. http://www.svibs.com/index
dc.relation[27] T. M. Inc, “Matlab,” The MathWorks Inc, Massachusetts, 2011.
dc.relation[28] M. Döhler, P. Andersen y L. Mevel, “Operational Modal Analysis using a Fast-Stochastic Subspace Identification Method” in Proceedings of the 30th International Modal Analysis Conference (IMAC) Jacksonville, Florida USA, 2012.
dc.relation[29] R. Brincker y P. Andersen, “Understanding Stochastic Subspace Identification” in Proceedings of the 24th International Modal Analysis Conference (IMAC), St. Louis, Missouri, 2006.
dc.relation[30] R. Brincker, P. Andersen y N. Jacobsen, “Automated Frequency Domain Decomposition for Operational Modal Analysis,” pp. 1–7. in Proceedings of The 25th International Modal Analysis Conference (IMAC), Orlando, Florida, 2007.
dc.relation[31] R. Brincker, L. Zhang y P. Andersen, “Modal Identification from Ambient Responses using Frequency Domain Decomposition” in Proceedings of the 18th International Modal Analysis Conference (IMAC), San Antonio, Texas, pp.625-630,2000.
dc.relation[32] I. D. Gómez Araujo, “Caracterización dinámica experimental de puentes de hormigón simplemente apoyados a partir de mediciones de vibración ambiental,” Universidad Industrial de Santander, 2010.
dc.relation[33] P. D. Welch, “The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” in IEEE Transactions on Audio and Electroacoustics, vol. 15, no. 2, pp. 70–73, 1967. https://doi.org/10.1109/TAU.1967.1161901
dc.relation[34] A. J. Felber, “Development of a Hybrid Bridge Evaluation System,” The University of British Columbia, Ph.D. Thesis, University of British Columbia, Canada, 1993
dc.relation[35] R. Lyons, Understanding digital signal processing. Michigan: Pearson, 2011.
dc.relation[36] M. Paz, Dinámica estructural: Teoría y Cálculo. Barcelona: Editorial Reverté S.A, 1992.
dc.relation[37] C. Rainieri y G. Fabbricino, Operational Modal Analysis of Civil Engineering Structures. New York: Springer science + business, 2014.
dc.relation[38] C. Lanczos, “The Lanczos Method Evolution and Application,” vol. 12, pp. 197–198, 2003.
dc.relation[39] N. Gastinel, Análisis numérico lineal. Barcelona: Editorial Reverté, S.A, 1975.
dc.relation[40] R. J. Allemang y D. L. Brown, “A Correlation Coefficient for Modal Vector Analysis,” in Proceedings of the 1st International Modal Analysis Conference. pp. 110-116. Orlando, FL, 1982.
dc.relation[41] E. C. Chu, Discrete and continuous fourier transforms: analysis, applications and fast algorithms. CRC Press, 2008.
dc.relation[42] R. Boroschek y F. Hernández, “Corrección de sobreestimación del amortiguamiento en el método de ancho de banda del espectro de potencia,” in Congreso Chileno de Sismología e Ingeniería Antisísmica, 2010.
dc.relation[43] J. D. Stevenson, “Structural Damping Values as a Function of Dynamic Response Stress and Deformation Levels,” Nucl. Eng. Des., vol. 60, pp. 211–237, 1980. https://doi.org/10.1016/0029-5493(80)90238-1
dc.relation[44] G. Martínez, P. Roca, J. Caselles, J. Clapes y A. H. Barbat, “Determinación experimental y analítica de las propiedades dinámicas para la Catedral de Mallorca,” in Congreso Nacional de Ingeniería Sísmica, 2007, pp. 1–8.
dc.relation[45] X. Chen, P. Omenzetter y S. Beskhyroun, “Calibration of the finite element model of a twelve-span prestressed concrete bridge using ambient vibration data,” 7th Eur. Work. Struct. Heal. Monit., EWSHM 2014, pp. 1388–1395, 2014.
dc.relation[46] C. Farrar et al., “Variability of Modal Parameters Measured on the Alamosa Canyon Bridge,” in Proceedings of the 15th International Modal Analysis Conference., p. 257. 1997.
dc.relation[47] M. Wahab y G. De Roeck, “Effect of Temperature on Dynamic System Parameters of a Highway Bridge,” Struct. Eng. Int., pp. 266–270.
dc.relation65
dc.relation52
dc.relation1
dc.relation14
dc.relationINGE CUC
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceINGE CUC
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1686
dc.subjectCaracterización dinámica
dc.subjectSalud estructural
dc.subjectMonitoreo
dc.subjectVibración ambiental
dc.subjectPuente viga cajón
dc.subjectAjuste del modelo numérico
dc.subjectDynamic characterization
dc.subjectStructural health
dc.subjectMonitoring
dc.subjectAmbient vibrations
dc.subjectBox girder bridge
dc.subjectNumerical model adjustment
dc.titleLínea base para el monitoreo de salud estructural del puente Gómez Ortiz a partir de pruebas de vibración ambiental
dc.titleStructural health monitoring baseline of Gómez Ortiz bridge using ambient vibration tests
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución