dc.creatorSilva Oliveira, Marcos Leandro
dc.creatorPinto, Diana
dc.creatorNagel-Hassemer, Maria Eliza
dc.creatorDal Moro, Leila
dc.creatorde Vargas Mores, Giana
dc.creatorBodah, Brian
dc.creatorNeckel, Alcindo
dc.date2023-08-01T19:40:04Z
dc.date2023-08-01T19:40:04Z
dc.date2022-12-23
dc.date.accessioned2023-10-03T19:53:07Z
dc.date.available2023-10-03T19:53:07Z
dc.identifierOliveira, M.L.S.; Pinto, D.; Nagel-Hassemer, M.E.; Dal Moro, L.; Mores, G.d.V.; Bodah, B.W.; Neckel, A. Brazilian Coal Tailings Projects: Advanced Study of Sustainable Using FIB-SEM and HR-TEM. Sustainability 2023, 15, 220. https:// doi.org/10.3390/su15010220
dc.identifierhttps://hdl.handle.net/11323/10353
dc.identifier10.3390/su15010220
dc.identifier2071-1050
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172977
dc.descriptionThe objective of this study is to obtain a more detailed assessment of particles that contain rare-earth elements (REEs) in abandoned deposits of Brazilian fine coal tailings (BFCTs), so as to aid current coal mining industries in the identification of methodologies for extracting such elements (Santa Catarina State, Brazil). The BFCT areas were sampled for traditional mineralogical analysis by X-ray Diffraction, Raman Spectroscopy and nanomineralogy by a dual beam focused ion beam (FIB) coupled with field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) coupled with an energy dispersive X-ray microanalysis system (EDS). The results show that the smaller the sampled coal fines were, the higher the proportion of rare-earth elements they contained. Although the concentration of REEs is below what would normally be considered an economic grade, the fact that these deposits are already ground and close to the surface negate the need for mining (only uncovering). This makes it significantly easier for REEs to be extracted. In addition, owing to their proximity to road and rail transport in the regions under study, the opportunity exists for such resources (BFCTs) to be utilized as a secondary market as opposed to simply being discarded as has been done in the past.
dc.format15 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherMDPI AG
dc.publisherSwitzerland
dc.relationSustainability
dc.relation1. Ma, Q.; Wu, J.; He, C.; Fang, X. The speed, scale, and environmental and economic impacts of surface coal mining in the Mongolian Plateau. Resour. Conserv. Recycl. 2021, 173, 105730. [CrossRef]
dc.relation2. Ribeiro, J.; Suárez-Ruiz, I.; Flores, D. Coal related fires in Portugal: New occurrences and new insights on the characterization of thermally affected and non-affected coal waste piles. Int. J. Coal Geol. 2022, 252, 103941. [CrossRef]
dc.relation3. Vo, T.L.; Nash, W.; Del Galdo, M.; Rezania, M.; Crane, R.; Mousavi Nezhad, M.; Ferrara, L. Coal mining wastes valorization as raw geomaterials in construction: A review with new perspectives. J. Clean. Prod. 2022, 336, 130213. [CrossRef]
dc.relation4. Wei, J.; Zhang, J.; Wu, X.; Song, Z. Governance in mining enterprises: An effective way to promote the intensification of resources—Taking coal resources as an example. Resour. Policy 2022, 76, 102623. [CrossRef]
dc.relation5. Valentim, B.; Guedes, A.; Rodrigues, S.; Flores, D. Case study of igneous intrusion effects on coal nitrogen functionalities. Int. J. Coal Geol. 2011, 86, 291–294. [CrossRef]
dc.relation6. Ciesielczuk, J.; Misz-Kennan, M.; Hower, J.C.; Fabia ´nska, M.J. Mineralogy and geochemistry of coal wastes from the Starzykowiec coal-waste dump (Upper Silesia, Poland). Int. J. Coal Geol. 2014, 127, 42–55. [CrossRef]
dc.relation7. Bondaruk, J.; Janson, E.; Wysocka, M.; Chałupnik, S. Identification of hazards for water environment in the Upper Silesian Coal Basin caused by the discharge of salt mine water containing particularly harmful substances and radionuclides. J. Sustain. Min. 2015, 14, 179–187. [CrossRef]
dc.relation8. Patra, K.; Ansari, S.A.; Mohapatra, P.K. Metal-organic frameworks as superior porous adsorbents for radionuclide sequestration: Current status and perspectives. J. Chromatogr. A 2021, 1655, 462491. [CrossRef]
dc.relation9. Zhao, B.; Chen, G.; Qin, L.; Han, Y.; Zhang, Q.; Chen, W.; Han, J. Effect of coal blending on arsenic and fine particles emission during coal combustion. J. Clean. Prod. 2021, 311, 127645. [CrossRef]
dc.relation10. Neckel, A.; Osorio-Martinez, J.; Pinto, D.; Bodah, B.W.; Adelodun, B.; Silva, L.F. Hazardous elements present in coal nanoparticles in a Caribbean port region in Colombia. Sci. Total Environ. 2022, 838, 156363. [CrossRef] [PubMed]
dc.relation11. Wang, X.; Garrabrants, A.C.; Chen, Z.; Van Der Sloot, H.A.; Brown, K.G.; Qiu, Q.; Delapp, R.C.; Hensel, B.; Kosson, D.S. The influence of redox conditions on aqueous-solid partitioning of arsenic and selenium in a closed coal ash impoundment. J. Hazard. Mater. 2022, 428, 128255. [CrossRef] [PubMed]
dc.relation12. Wiero ´nska-Wi´sniewska, F.; Makowska, D.; Strugała, A. Arsenic in polish coals: Content, mode of occurrence, and distribution during coal combustion process. Fuel 2022, 312, 122992. [CrossRef]
dc.relation13. Xu, F.; Chu, M.; Hao, C.; Zhou, L.; Sun, X.; Gu, Z. Volatilization characteristics and relationship of arsenic and sulfur during coal pyrolysis. Fuel 2022, 315, 123223. [CrossRef]
dc.relation14. Zhao, Y.; Zhang, J.; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China. Int. J. Coal Geol. 2008, 73, 52–62. [CrossRef]
dc.relation15. Saikia, B.K.; Saikia, J.; Rabha, S.; Silva, L.F.; Finkelman, R. Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geosci. Front. 2018, 9, 863–875. [CrossRef]
dc.relation16. Hu, G.; Liu, G.; Wu, D.; Fu, B. Geochemical behavior of hazardous volatile elements in coals with different geological origin during combustion. Fuel 2018, 233, 361–376. [CrossRef]
dc.relation17. George, A.; Shen, B.; Kang, D.; Yang, J.; Luo, J. Emission control strategies of hazardous trace elements from coal-fired power plants in China. Res. J. Environ. Sci. 2020, 93, 66–90. [CrossRef]
dc.relation18. Guo, Y.; Zhang, Y.; Zhao, X.; Xu, J.; Qiu, G.; Jia, W.; Wu, J.; Guo, F. Multifaceted evaluation of distribution, occurrence, and leaching features of typical heavy metals in different-sized coal gasification fine slag from Ningdong region, China: A case study. Sci. Total Environ. 2022, 831, 154726. [CrossRef]
dc.relation19. Singer, D.M.; Herndon, E.; Cole, K.; Koval, J.; Perdrial, N. Formation of secondary mineral coatings and the persistence of reduced metal-bearing phases in soils developing on historic coal mine spoil. Appl. Geochem. 2020, 121, 104711. [CrossRef]
dc.relation20. Fu, Y.; Li, H.; Mei, H.; Feng, Z.; Chen, R.; Li, J.; Wang, Y.; Fu, W. Organic contaminant removal with no adsorbent recycling based on microstructure modification in coal slime filtration. Fuel 2021, 288, 119630. [CrossRef]
dc.relation21. Petrovi´c, M.; Fiket, E. Environmental damage caused by coal combustion residue disposal: A critical review of risk assessment methodologies. Chemosphere 2022, 299, 134410. [CrossRef] [PubMed]
dc.relation22. Ribeiro, J.; Machado, G.; Moreira, N.; Suárez-Ruiz, I.; Flores, D. Petrographic and geochemical characterization of coal from Santa Susana Basin, Portugal. Int. J. Coal Geol. 2019, 203, 36–51. [CrossRef]
dc.relation23. Trechera, P.; Moreno, T.; Córdoba, P.; Moreno, N.; Zhuang, X.; Li, B.; Li, J.; Shangguan, Y.; Dominguez, A.O.; Kelly, F.; et al. Comprehensive evaluation of potential coal mine dust emissions in an open-pit coal mine in Northwest China. Int. J. Coal Geol. 2021, 235, 103677. [CrossRef]
dc.relation24. Marove, C.A.; Sotozono, R.; Tangviroon, P.; Tabelin, C.B.; Igarashi, T. Assessment of soil, sediment and water contaminations around open-pit coal mines in Moatize, Tete province, Mozambique. Environ. Adv. 2022, 8, 100215. [CrossRef]
dc.relation25. Kalkreuth, W.; Holz, M.; Mexias, A.; Balbinot, M.; Levandowski, J.; Willett, J.; Finkelman, R.; Burger, H. Depositional setting, petrology and chemistry of Permian coals from the Paraná Basin: 2. South Santa Catarina Coalfield, Brazil. Int. J. Coal Geol. 2010, 84, 213–236. [CrossRef]
dc.relation26. De Souza, M.R.; Garcia, A.L.H.; Dalberto, D.; Nicolau, C.; Gazzineu, A.L.; Grivicich, I.; Boaretto, F.; Picada, J.N.; De Souza, G.M.S.; Chytry, P.; et al. Evaluation of soils under the influence of coal mining and a thermoelectric plant in the city of Candiota and vicinity, Brazil. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2021, 866, 503350. [CrossRef]
dc.relation27. Silva, L.F.O.; Pinto, D.; Dotto, G.L.; Hower, J.C. Nanomineralogy of evaporative precipitation of efflorescent compounds from coal mine drainage. Geosci. Front. 2021, 12, 101003. [CrossRef]
dc.relation28. Neckel, A.; Pinto, D.; Adelodun, B.; Dotto, G.L. An Analysis of Nanoparticles Derived from Coal Fly Ash Incorporated into Concrete. Sustainability 2022, 14, 3943. [CrossRef]
dc.relation29. Pereira, Z.; Mendes, M.; Souza, P.; Rodrigues, C.; Fernandes, P.; Ade, M.; Araújo, C.; Almeida, J.; Santos, E.; Rocha, H.; et al. Palynology of Bonito and Barro Branco coal seams from Rio Bonito Formation (Lower Permian of Paraná Basin) in the Criciúma coal region, southernmost Brazil. J. S. Am. Earth Sci. 2019, 91, 27–35. [CrossRef]
dc.relation30. Fdez-Ortiz De Vallejuelo, S.; Gredilla, A.; Da Boit, K.; Teixeira, E.C.; Sampaio, C.H.; Madariaga, J.M.; Silva, L.F. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: Environmental impact and risk assessment. Chemosphere 2017, 169, 725–733. [CrossRef]
dc.relation31. Gonçalves, P.A.; Pinheiro, S.; Mendonça Filho, J.G.; Mendonça, J.O.; Flores, D. Study of a Silurian sequence of Dornes region (Central Iberian Zone, Portugal): The contribution of organic petrology and palynofacies. Int. J. Coal Geol. 2020, 225, 103501. [CrossRef]
dc.relation32. Lieberman, N.R.; Izquierdo, M.; Muñoz-Quirós, C.; Cohen, H.; Chenery, S.R. Geochemical signature of superhigh organic sulphur Raša coals and the mobility of toxic trace elements from combustion products and polluted soils near the Plomin coal-fired power station in Croatia. J. Appl. Geochem. 2020, 114, 104472. [CrossRef]
dc.relation33. Rodríguez, J.; Frías, M.; Tobón, J.I. Eco-efficient cement based on activated coal washing rejects with low content of kaolinite. Constr. Build. Mater. 2021, 274, 122118. [CrossRef]
dc.relation34. Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [CrossRef]
dc.relation35. Xie, P.; Liu, J.; Fu, B.; Newmaster, T.; Hower, J.C. Resources from coal beneficiation waste: Chemistry and petrology of the Ayrshire coal tailings ponds, Chandler, Indiana. Fuel 2022, 313, 123054. [CrossRef]
dc.relation36. Oliveira, M.L.; Da Boit, K.; Schneider, I.L.; Teixeira, E.C.; Crissien Borrero, T.J.; Silva, L.F. Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: Mineral surface chemistry and nanoparticle-aggregation control for health studies. J. Clean. Prod. 2018, 188, 662–669. [CrossRef]
dc.relation37. Borah, S.N.; Goswami, L.; Sen, S.; Sachan, D.; Sarma, H.; Montes, M.; Peralta-Videa, J.R.; Pakshirajan, K.; Narayan, M. Selenite bioreduction and biosynthesis of selenium nanoparticles by Bacillus paramycoides SP3 isolated from coal mine overburden leachate. Environ. Pollut. 2021, 285, 117519. [CrossRef]
dc.relation38. Liao, Y.; An, M.; Hao, X.; Song, X.; Yang, Z.; Ren, H.; Liu, Z. Enhanced floatability of low rank coal using surface functionalized polystyrene nanoparticles as collectors. J. Clean. Prod. 2021, 284, 124763. [CrossRef]
dc.relation39. Singh, S.; Ghorai, M.K.; Kar, K.K. Extraction of silicon in the form of nanoparticles and nanorods from coal fly ash. In Handbook of Fly Ash; Elsevier: Amsterdam, The Netherlands, 2022; pp. 451–474. [CrossRef]
dc.relation40. Ju, Y.; Huang, C.; Sun, Y.; Wan, Q.; Lu, X.; Lu, S.; He, H.; Wang, X.; Zou, C.; Wu, J.; et al. Nanogeosciences: Research History, Current Status, and Development Trends. J. Nanosci. Nanotechnol. 2017, 17, 5930–5965. [CrossRef]
dc.relation41. Karayigit, A.I.; Oskay, R.G.; Çelik, Y. Mineralogy, petrography, and Rock-Eval pyrolysis of late Oligocene coal seams in the Malkara coal field from the Thrace Basin (NW Turkey). Int. J. Coal Geol. 2021, 244, 103814. [CrossRef]
dc.relation42. Filonchyk, M.; Peterson, M.P. An integrated analysis of air pollution from US coal-fired power plants. Geosci. Front. 2022, 14, 101498. [CrossRef]
dc.relation43. Chen, Z.; Shi, Z.; Ni, S.; Cheng, L. Characteristics of soil pollution and element migration associated with the use of coal in Hutou Village, Yunnan Province, China. Ecol. Indic. 2022, 139, 108976. [CrossRef]
dc.relation44. Nunes, L.E.; Lima, M.V.A.D.; Davison, M.; Leite, A.L.D.S. Switch and defer option in renewable energy projects: Evidences from Brazil. Energy 2021, 231, 120972. [CrossRef]
dc.relation45. Rocha, D.H.; Siqueira, D.S.; Silva, R.J. Effects of coal compositions on the environment and economic feasibility of coal generation technologies. Sustain. Energy Technol. Assess. 2021, 47, 101500. [CrossRef]
dc.relation46. Lima, P.R.; Pereira, A.A.M.; Chaves, G.D.L.D.; Meneguelo, A.P. Environmental awareness and public perception on carbon capture and storage (CCS) in Brazil. Int. J. Greenh. Gas. Control 2021, 111, 103467. [CrossRef]
dc.relation47. Nordin, A.P.; Da Silva, J.; De Souza, C.; Niekraszewicz, L.A.B.; Dias, J.F.; Da Boit, K.; Oliveira, M.L.S.; Grivicich, I.; Garcia, A.L.; Silva, L.F.; et al. In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage. J. Hazard. Mater. 2018, 346, 263–272. [CrossRef]
dc.relation48. Gredilla, A.; Fdez-Ortiz de Vallejuelo, S.; Rodriguez-Iruretagoiena, A.; Gomez, L.; Oliveira, M.L.S.; Arana, G.; De Diego, A.; Madariaga, J.M. Evidence of mercury sequestration by carbon nanotubes and nanominerals present in agricultural soils from a coal fired power plant exhaust. J. Hazard. Mater. 2019, 378, 120747. [CrossRef]
dc.relation49. Freitas, A.P.P.; Schneider, I.A.H.; Schwartzbold, A. Biosorption of heavy metals by algal communities in water streams affected by the acid mine drainage in the coal-mining region of Santa Catarina state, Brazil. Miner. Eng. 2011, 24, 1215–1218. [CrossRef]
dc.relation50. IBGE. Brazilian Institute of Geography and Statistics. Demographic Data of 2022—Brazil. 2022. Available online: https: //www.ibge.gov.br/cidades-e-estados/sc.html (accessed on 15 September 2022).
dc.relation51. ASTM D2013/D2013M-12; Standard Practice for Preparing Coal Samples for Analysis. ASTM International: West Conshohocken, PA, USA, 2013.
dc.relation52. Civeira, M.; Pinheiro, R.; Gredilla, A.; De Vallejuelo, S.; Oliveira, M.; Ramos, C.; Taffarel, S.; Kautzmann, R.; Madariaga, J.; Silva, L.F. The properties of the nano-minerals and hazardous elements: Potential environmental impacts of brazilian coal waste fire. Sci. Total Environ. 2016, 544, 892–900. [CrossRef]
dc.relation53. Kamble, A.D.; Mendhe, V.A.; Chavan, P.D.; Saxena, V.K. Insights of mineral catalytic effects of high ash coal on carbon conversion in fluidized bed Co-gasification through FTIR, XRD, XRF and FE-SEM. Renew. Energy 2022, 183, 729–751. [CrossRef]
dc.relation54. López, I.C.; Ward, C.R. Composition and mode of occurrence of mineral matter in some Colombian coals. Int. J. Coal Geol. 2008, 73, 3–18. [CrossRef]
dc.relation55. Okolo, G.N.; Neomagus, H.W.; Everson, R.C.; Roberts, M.J.; Bunt, J.R.; Sakurovs, R.; Mathews, J.P. Chemical–structural properties of South African bituminous coals: Insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13 C NMR, and HRTEM techniques. Fuel 2015, 158, 779–792. [CrossRef]
dc.relation56. Matlala, I.V.; Moroeng, O.M.; Wagner, N.J. Macromolecular structural changes in contact metamorphosed inertinite-rich coals from the No. 2 Seam, Witbank Coalfield (South Africa): Insights from petrography, NMR and XRD. Int. J. Coal Geol. 2021, 247, 103857. [CrossRef]
dc.relation57. Zhou, H.; Wirth, R.; Gleeson, S.A.; Schreiber, A.; Mayanna, S. Three-Dimensional and Microstructural Fingerprinting of Gold Nanoparticles at Fluid-Mineral Interfaces. Am. Mineral. 2021, 106, 97–104. [CrossRef]
dc.relation58. Sánchez-Peña, N.E.; Narváez-Semanate, J.L.; Pabón-Patiño, D.; Fernández-Mera, J.E.; Oliveira, M.L.; Da Boit, K.; Tutikian, B.; Crissien, T.; Pinto, D.; Serrano, I.; et al. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere 2018, 191, 1048–1055. [CrossRef]
dc.relation59. Oliveira, M.L.; Flores, E.M.; Dotto, G.L.; Neckel, A.; Silva, L.F. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): The protagonist of black crusts produced on historic buildings. J. Clean. Prod. 2021, 278, 123982. [CrossRef]
dc.relation60. Li, X.; Dai, S.; Zhang, W.; Li, T.; Zheng, X.; Chen, W. Determination of As and Se in coal and coal combustion products using closed vessel microwave digestion and collision/reaction cell technology (CCT) of inductively coupled plasma mass spectrometry (ICP-MS). Int. J. Coal Geol. 2014, 124, 1–4. [CrossRef]
dc.relation61. Yan, X.; Dai, S.; Graham, I.T.; He, X.; Shan, K.; Liu, X. Determination of Eu concentrations in coal, fly ash and sedimentary rocks using a cation exchange resin and inductively coupled plasma mass spectrometry (ICP-MS). Int. J. Coal Geol. 2018, 191, 152–156. [CrossRef]
dc.relation62. Neckel, A.; Oliveira, M.L.; Castro Bolaño, L.J.; Maculan, L.S.; Moro, L.D.; Bodah, E.T.; Moreno-Ríos, A.L.; Bodah, B.W.; Silva, L.F. Biophysical matter in a marine estuary identified by the Sentinel-3B OLCI satellite and the presence of terrestrial iron (Fe) nanoparticles. Mar. Pollut. Bull. 2021, 173, 112925. [CrossRef]
dc.relation63. Uz-Zaman, K.A.; Biswas, B.; Rahman, M.M.; Naidu, R. Smectite-supported chain of iron nanoparticle beads for efficient clean-up of arsenate contaminated water. J. Hazard. Mater. 2021, 407, 124396. [CrossRef]
dc.relation64. Munir, M.A.M.; Liu, G.; Yousaf, B.; Mian, M.M.; Ali, M.U.; Ahmed, R.; Cheema, A.I.; Naushad, M. Contrasting effects of biochar and hydrothermally treated coal gangue on leachability, bioavailability, speciation and accumulation of heavy metals by rapeseed in copper mine tailings. Ecotoxicol. Environ. Saf. 2020, 191, 110244. [CrossRef] [PubMed]
dc.relation65. Zhang, T.; Li, Z.; Hu, F.; Huang, X.; Liu, Z. Correlation of sodium releasing and mineral transformation characteristics with ash composition of typical high-alkali coals. Fuel Process. Technol. 2021, 224, 107035. [CrossRef]
dc.relation66. Silva, L.F.O.; Da Boit, K.M.; Finkelman, R.B. Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns. Environ. Geochem. Health 2009, 31, 475–485. [CrossRef] [PubMed]
dc.relation67. Wilcox, J.; Wang, B.; Rupp, E.; Taggart, R.; Hsu-Kim, H.; Oliveira, M.; Cutruneo, C.; Taffarel, S.; Thomas, G.; Hower, J. Observations and assessment of fly ashes from high-sulfur bituminous coals and blends of high-sulfur bituminous and subbituminous coals: Environmental processes recorded at the macro and nanometer scale. Energy Fuels 2015, 29, 7168–7177. [CrossRef]
dc.relation68. Ketris, M.P.; Yudovich, Y.E. Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [CrossRef]
dc.relation69. Ferreira, L.P.; Müller, T.G.; Cargnin, M.; De Oliveira, C.M.; Peterson, M. Valorization of waste from coal mining pyrite beneficiation. J. Environ. Chem. Eng. 2021, 9, 105759. [CrossRef]
dc.relation70. Sriramoju, S.; Kumar, D.; Majumdar, S.; Dash, P.; Shee, D.; Banerjee, R. Sustainability of coal mines: Separation of clean coal from the fine-coal rejects by ultra-fine grinding and density-gradient-centrifugation. Powder Technol. 2021, 383, 356–370. [CrossRef]
dc.relation71. Dwivedi, S.; Saquib, Q.; Al-Khedhairy, A.A.; Ali, A.Y.S.; Musarrat, J. Characterization of coal fly ash nanoparticles and induced oxidative DNA damage in human peripheral blood mononuclear cells. Sci. Total Environ. 2012, 437, 331–338. [CrossRef]
dc.relation72. Maass, D.; Valério, A.; Lourenço, L.A.; De Oliveira, D.; Hotza, D. Biosynthesis of iron oxide nanoparticles from mineral coal tailings in a stirred tank reactor. Hydrometallurgy 2019, 184, 199–205. [CrossRef]
dc.relation73. Ju, Y.; Li, X.; Ju, L.; Feng, H.; Tan, F.; Cui, Y.; Yang, Y.; Wang, X.; Cao, J.; Qiao, P.; et al. Nanoparticles in the Earth surface systems and their effects on the environment and resource. Gondwana Res. 2022, 110, 370–392. [CrossRef]
dc.relation74. Hu, G.; Cao, J. Occurrence and significance of natural ore-related Ag nanoparticles in groundwater systems. Chem. Geol. 2019, 515, 9–21. [CrossRef]
dc.relation75. Pokrovski, G.S.; Kokh, M.A.; Proux, O.; Hazemann, J.L.; Bazarkina, E.F.; Testemale, D.; Escoda, C.; Boiron, M.C.; Blanchard, M.; Aigouy, T.; et al. The nature and partitioning of invisible gold in the pyrite-fluid system. Ore Geol. Rev. 2019, 109, 545–563. [CrossRef]
dc.relation76. Permana, A.K.; Ward, C.R.; Li, Z.; Gurba, L.W. Distribution and origin of minerals in high-rank coals of the South Walker Creek area, Bowen Basin, Australia. Int. J. Coal Geol. 2013, 116–117, 185–207. [CrossRef]
dc.relation77. Luo, S.X.; Nie, X.; Yang, M.Z.; Fu, Y.H.; Zeng, P.; Wan, Q. Sorption of differently charged gold nanoparticles on synthetic pyrite. Minerals 2018, 8, 428. [CrossRef]
dc.relation78. Niu, Q.; Pan, J.; Jin, Y.; Wang, H.; Li, M.; Ji, Z.; Wang, K.; Wang, Z. Fractal study of adsorption-pores in pulverized coals with various metamorphism degrees using N2 adsorption, X-ray scattering and image analysis methods. J. Pet. Sci. Eng. 2019, 176, 584–593. [CrossRef]
dc.relation79. Reich, M.; Utsunomiya, S.; Kesler, S.E.; Wang, L.; Ewing, R.C.; Becker, U. Thermal behavior of metal nanoparticles in geologic materials. Geology 2006, 34, 1033–1036. [CrossRef]
dc.relation80. Saeed, S.; Saleem, M.; Durrani, A.K. Thermal performance analysis of low-grade coal pretreated by ionic liquids possessing imidazolium, ammonium and phosphonium cations. Fuel 2020, 271, 117655. [CrossRef]
dc.relation81. Sun, Z.; Huang, B.; Liu, Y.; Jiang, Y.; Zhang, Z.; Hou, M.; Li, Y. Gas-phase production equation for CBM reservoirs: Interaction between hydraulic fracturing and coal orthotropic feature. J. Pet. Sci. Eng. 2022, 213, 110428. [CrossRef]
dc.relation82. Zhang, X.; Sun, B.; Fan, X.; Liang, P.; Zhao, G.; Saikia, B.K.; Wei, X. Hierarchical porous carbon derived from coal and biomass for high performance supercapacitors. Fuel 2022, 311, 122552. [CrossRef]
dc.relation83. Xueqiu, W.; Bimin, Z.; Xin, L.; Shanfa, X.; Wensheng, Y.; Rong, Y. Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China. Ore Geol. Rev. 2016, 73, 417–431. [CrossRef]
dc.relation84. Hao, R.; Li, X.; Xu, P.; Liu, Q. Thermal activation and structural transformation mechanism of kaolinitic coal gangue from Jungar coalfield, Inner Mongolia, China. Appl. Clay Sci. 2022, 223, 106508. [CrossRef]
dc.relation15
dc.relation1
dc.relation1
dc.relation15
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.mdpi.com/2071-1050/15/1/220
dc.subjectSustainable macroscales
dc.subjectCoal tailings
dc.subjectAnalytical procedures
dc.subjectBrazilian coal mining
dc.titleBrazilian coal tailings projects: advanced study of sustainable using FIB-SEM and HR-TEM
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución