Mejorar la resiliencia de los edificios de acero mediante estrategias de diseño innovadoras;
Estado del arte del proyecto

dc.creatorPadilla, Samuel
dc.creatorPadilla, David
dc.date2020-08-25T17:10:06Z
dc.date2020-08-25T17:10:06Z
dc.date2020
dc.date.accessioned2023-10-03T19:52:57Z
dc.date.available2023-10-03T19:52:57Z
dc.identifierhttps://hdl.handle.net/11323/7010
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172945
dc.descriptionThe objective of the proposed project is to explore innovative strategies for improving steel buildings resilience through an approach that actively integrate the architectural and structural design processes.This project will be divided in two focus areas, the first phase will focus on developing the integrated architectural-structural design framework that includes a set of computational tools (both commercial and in-house developed code) to incorporate actively the structural engineering processes into the architectural design. The second focus area will deal with developing strategies to improve steel building resilience through the use of energy-dissipating strategies and facilitated by work emerging from the research plan for the first research focus area.
dc.descriptionEl objetivo del proyecto propuesto es explorar estrategias innovadoras para mejorar la resiliencia de los edificios de acero a través de un enfoque que integra activamente los procesos de diseño arquitectónico y estructural. marco de diseño estructural que incluye un conjunto de herramientas computacionales (tanto código comercial como desarrollado internamente) para incorporar activamente los procesos de ingeniería estructural en el diseño arquitectónico. La segunda área de enfoque se ocupará del desarrollo de estrategias para mejorar la resiliencia de la construcción de acero mediante el uso de estrategias de disipación de energía y facilitado por el trabajo que surge del plan de investigación para la primera área de enfoque de investigación.
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.relationAmerican Society of Civil Engineers (Ed.). (2017). Minimum design loads and associated criteria for buildings and other structures. Reston, Virginia: American Society of Civil Engineers.
dc.relationSkinner, R.I., Kelly, J., & Heine, A. (1975). Hysteretic dampers for earthquake resistant structures. Earthquake engineering and structural dynamics, pp. 287-297
dc.relationApplied Technology Council. 2009. “FEMA P-695: Quantification of Building Seismic Performance Factors. FEMA P695.” (June):421
dc.relationClayton, Patricia M., Daniel M. Dowden, Chao Hsien Li, Jeffrey W. Berman, Michel Bruneau, Laura N. Lowes, and Keh Chuan Tsai. 2016. “Self-Centering Steel Plate Shear Walls for Improving Seismic Resilience.” Frontiers of Structural and Civil Engineering 10(3):283–90.
dc.relationCui, Ye, Xilin Lu, and Chun Jiang. 2017. “Experimental Investigation of Tri-Axial Self-Centering Reinforced Concrete Frame Structures through Shaking Table Tests.” Engineering Structures 132:684–94.
dc.relationDowden, Daniel M. and Michel Bruneau. 2019. “Quasi-Static Cyclic Testing and Analytical Investigation of Steel Plate Shear Walls with Different Post-Tensioned Beam-to-Column Rocking Connections.” Engineering Structures 187(November 2018):43–56.
dc.relationEatherton, Matthew, Jerome Hajjar, Xiang Ma, Helmut Krawinkler, and Greg Deierlein. 2010. “Seismic Design and Behavior of Steel Frames with Controlled Rocking - Part I: Concepts and Quasi-Static
dc.relationEatherton, Matthew R. and Jerome F. Hajjar. 2010. “Large-Scale Cyclic and Hybrid Simulation Testing and Development of a Controlled- Rocking Steel Building System with Replaceable Fuses. Report No. NSEL-025.” NSEL Report Series (September).
dc.relationFan, Xiaowei, Longhe Xu, and Zhongxian Li. 2019. “Seismic Performance Evaluation of Steel Frames with Pre-Pressed Spring Self-Centering Braces.” Journal of Constructional Steel Research 162:105761.
dc.relationHarash, M. T. Al, A. Rathore, and N. Panahshahi. 2010. “Inelastic Seismic Response of Rectangular RC Buildings with Plan Aspect Ratio of 3:1 with Floor Diaphragm Openings.” Structures Congress 2010 41130(March):1971–80.
dc.relationHenry, Richard S., S. Sritharan, and J. M. Ingham. 2011. “Recentering Requirements for the Seismic Design of Self-Centering Systems.” 9th Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society (104).
dc.relationKamperidis, Vasileios C., Theodore L. Karavasilis, and George Vasdravellis. 2018. “Self-Centering Steel Column Base with Metallic Energy Dissipation Devices.” Journal of Constructional Steel Research 149:14–30.
dc.relationLu, Xilin, Chun Jiang, Boya Yang, and Liumeng Quan. 2019. “Seismic Design Methodology for Self-Centering Reinforced Concrete Frames.” Soil Dynamics and Earthquake Engineering 119(May 2018):358–74
dc.relationMaurya, Abhilasha, Matthew R. Eatherton, Roberto T. Leon, Ioannis Koutromanos, and Mahendra P. Singh. 2016. EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF A SELFCENTERING BEAM MOMENT FRAME (SCB-MF)
dc.relationSpeicher, Matthew S., Reginald DesRoches, and Roberto T. Leon. 2017. “Investigation of an Articulated Quadrilateral Bracing System Utilizing Shape Memory Alloys.” Journal of Constructional Steel Research 130:65–78.
dc.relationTsampras, G., R. Sause, R. B. Fleischman, and J. I. Restrepo. 2015. “An Earthquake-Resistant Building System to Reduce Floor Accelerations.” New Zealand Society for Earthquake Engineering 445–53.
dc.relationWalter Yang, Chuang Sheng, Reginald DesRoches, and Roberto T. Leon. 2010. “Design and Analysis of Braced Frames with Shape Memory Alloy and Energy-Absorbing Hybrid Devices.” Engineering Structures 32(2):498–507.
dc.relationWang, Bin, Songye Zhu, Can Xing Qiu, and Hao Jin. 2019. “High-Performance Self-Centering Steel Columns with Shape Memory Alloy Bolts: Design Procedure and Experimental Evaluation.” Engineering Structures 182(December 2018):446–58
dc.relationWang, Xian Tie, Chuan Dong Xie, Lin Hui Lin, and Jin Li. 2019. “Seismic Behavior of Self-Centering Concrete-Filled Square Steel Tubular (CFST) Column Base.” Journal of Constructional Steel Research 156:75–85.
dc.relationXu, Longhe, Shuijing Xiao, and Zhongxian Li. 2018. “Hysteretic Behavior and Parametric Studies of a Self-Centering RC Wall with Disc Spring Devices.” Soil Dynamics and Earthquake Engineering 115(September):476–88.
dc.relationPérez, C. (2019). Business innovation at the service of the micro and small business of North-Santander: for regional competitiveness. ECONÓMICAS CUC, 40(1), 91- 104. https://doi.org/10.17981/econcuc.40.1.2019.06
dc.relationZhang, Changxuan, Taylor C. Steele, and Lydell D. A. Wiebe. 2018. “Design-Level Estimation of Seismic Displacements for Self-Centering SDOF Systems on Stiff Soil.” Engineering Structures 177(February 2017):431–43.
dc.relationZhang, Zhi, Robert B. Fleischman, Jose I. Restrepo, Gabriele Guerrini, Arpit Nema, Dichuan Zhang, Ulina Shakya, Georgios Tsampras, and Richard Sause. 2018. “Shake-Table Test Performance of an Inertial Force-Limiting Floor Anchorage System.”
dc.relationEarthquake Engineering and Structural Dynamics 47(10):1987–2011
dc.relationAUTODESK, (2016). Dynamo [Online]. Available: http://dynamobim.org/ [Accessed 10 March 2020]
dc.relationDavidson, S. (2017). Grasshopper - Algorithmic Modeling for Rhino [Online], Available: www.grasshopper3d.com [Accessed 10 March 2020]
dc.relationAUTODESK, (2017). Robot Structural Analysis Professional [Online]. Available: www.autodesk.com/products/robot-structural-analysis/overview [Accessed 10 March 2020].
dc.relationPreisinger, C. (2020). Karamba - parametric engineering [Online]. Available: http://www.karamba3- D.com/ [Accessed 10 March, 2020]
dc.relationMazzoni, S., McKenna, F., Scott, M.H., Fenves, G.L. Open System for Earthquake Engineering Simulation User CommandLanguage Manual, OpenSees Version 2.0, Berkeley, California, 2009
dc.relationH. G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, COMPUTERS IN PHYSICS, VOL. 12, NO. 6, NOV/DEC 1998.
dc.relationOpenFOAM Wiki (2019), Retrieved 17:00, March 14, 2020 from https://wiki.openfoam.com/index.php?title=Main_Page&oldid=2897.
dc.relationABAQUS. ABAQUS Documentation 2019, Dassault Systèmes Simulia Corp., Providence, RI, USA, 2019
dc.relationLSTC (2018). LS-DYNA User’s Manuals R11, Livermore Software and Technology Corporation, Livermore, CA, USA.
dc.relationCaro Moreno, J. (2016). Funding of technological innovation in the services sector in Colombia. ECONÓMICAS CUC, 37(2), 89-114. https://doi.org/10.17981/econcuc.37.2.2016.05
dc.relationPadilla-Llano, D.A., Madhavan, M.B., Briggs, N.E., Hajjar, J.F. (2019). “Cyclic Fracture Simulation for Steel and Concrete in Steel-Concrete Composite Diaphragms.” ASCE Structures Congress 2019.
dc.relationPadilla-Llano, D. A., Hajjar, J. F., Eatherton, M. R., and Schafer, B. W. (2018). “Cyclic Fracture Simulation Framework for Modeling Collapse in Steel Structures.” Proceedings of the 11th U.S. National Conference on Earthquake Engineering, Los Angeles, CA, June 25-29
dc.relationEatherton, Matthew, Jerome Hajjar, Xiang Ma, Helmut Krawinkler, and Greg Deierlein. 2010. “Seismic Design and Behavior of Steel Frames with Controlled Rocking - Part I: Concepts and Quasi-Static Subassembly Testing.” Structures Congress 2010 41130(February 2015):1523–33.
dc.relationChancellor N, Eatherton M, Roke D, Akbas T. Self-centering seismic lateral force resisting systems: High performance structures for the city of tomorrow. Buildings, 2014;4(3):520–48.
dc.relationMirzai NM, Attarnejad R, Hu JW. Enhancing the seismic performance of EBFs with vertical shear link using a new self-centering damper. Int J 2018;35(4):57–75.
dc.relationXiaogang H, Matthew R. E, Zhen Z., Initial stiffness of self-centering systems and application to self-centering-beam momentframes, Engineering Structures, 203, 2020.
dc.relationXiaogang H, Matthew R. E, Zhen Z., Initial stiffness of self-centering systems and application to self-centering-beam momentframes, Engineering Structures, 203, 2020.
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectSteel Buildings
dc.subjectResilience
dc.subjectInnovative Design Strategies
dc.titleImproving Steel Buildings Resilience through Innovative Design Strategies
dc.titleMejorar la resiliencia de los edificios de acero mediante estrategias de diseño innovadoras
dc.titleEstado del arte del proyecto
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución