dc.creatorNiebles Atencio, Fabricio Andres
dc.creatorBustacara Prasca, Alexander
dc.creatorNeira Rodado, Dionicio
dc.creatorMendoza Casseres, Daniel
dc.creatorRojas Santiago, Miguel
dc.date2018-11-19T20:00:20Z
dc.date2018-11-19T20:00:20Z
dc.date2016
dc.date.accessioned2023-10-03T19:52:45Z
dc.date.available2023-10-03T19:52:45Z
dc.identifier03029743
dc.identifierhttp://hdl.handle.net/11323/1321
dc.identifierDOI: 10.1007/978-3-319-41000-5_41
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172917
dc.descriptionThis paper considers the problem of scheduling a given set of samples in a mineral laboratory, located in Barranquilla Colombia. Taking into account the natural complexity of the process and the large amount of variables involved, this problem is considered as NP-hard in strong sense. Therefore, it is possible to find an optimal solution in a reasonable computational time only for small instances, which in general, does not reflect the industrial reality. For that reason, it is proposed the use of metaheuristics as an alternative approach in this problem with the aim to determine, with a low computational effort, the best assignation of the analysis in order to minimize the makespan and weighted total tardiness simultaneously. These optimization objectives will allow this labora-tory to improve their productivity and the customer service, respectively. A Ant Colony Optimization algorithm (ACO) is proposed. Computational experiments are carried out comparing the proposed approach versus exact methods. Results show the efficiency of our ACO algorithm.
dc.formatapplication/pdf
dc.languageeng
dc.publisherLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rightsAtribución – No comercial – Compartir igual
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectAnt colony optimization
dc.subjectMulti-objective optimization
dc.subjectScheduling
dc.titleA comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución