dc.creatorSilva, Jesús
dc.creatorVarela Izquierdo, Noel
dc.creatorPineda, Omar
dc.date2020-11-12T21:11:07Z
dc.date2020-11-12T21:11:07Z
dc.date2020
dc.date2021-06-19
dc.date.accessioned2023-10-03T19:52:38Z
dc.date.available2023-10-03T19:52:38Z
dc.identifier2194-5357
dc.identifierhttps://hdl.handle.net/11323/7293
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172895
dc.descriptionCoffee is produced in Latin America, Africa and Asia, and is one of the most traded agricultural products in international markets. The coffee agribusiness has been diversified all over the world and constitutes an important source of employment, income and foreign exchange in many producing countries. In recent years, its global supply has been affected by adverse weather factors and pests such as rust, which has been reflected in a highly volatile international market for this product [1]. This paper shows a method for the detection of coffee crops and the presence of pests and diseases in the production of these crops, using multispectral images from the Landsat 8 satellite.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relationChemura, A., Mutanga, O., Dube, T.: Separability of coffee leaf rust infection levels with machine learning methods at sentinel-2 MSI spectral resolutions. Precis. Agric. 23 (2016)
dc.relationLandgrebe, D.: Hyperspectral image data analysis. IEEE Signal Process. Mag. 19, 17–28 (2002)
dc.relationVelásquez, D., Sánchez, A., Sarmiento, S., Toro, M., Maiza, M., Sierra, B.: A method for detecting coffee leaf rust through wireless sensor networks, remote sensing, and deep learning: case study of the caturra variety in Colombia. Appl. Sci. 10(2), 697 (2020)
dc.relationMahlein, A.K., Steiner, U., Hillnhutter, C., Dehne, H.W., Oerke, E.C.: Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods 8, 3 (2012)
dc.relationDe Oliveira Pires, M.S., de Carvalho Alves, M., Pozza, E.A.: Multispectral radiometric characterization of coffee rust epidemic in different irrigation management systems. Int. J. Appl. Earth Obs. Geoinf. 86, 102016 (2020)
dc.relationViloria, A.: Commercial strategies providers pharmaceutical chains for logistics cost reduction. Indian J. Sci. Technol. 8(1), Q16 (2016)
dc.relationThomas, S., Wahabzada, M., Kuska, M.T., Rascher, U., Mahlein, A.K.: Observation of plant–pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements. Funct. Plant Biol. 44, 23–34 (2016)
dc.relationHuang, W., Lamb, D.W., Niu, Z., Zhang, Y., Liu, L., Wang, J.: Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 8(4–5), 187–197 (2007)
dc.relationDa Rocha Miranda, J., de Carvalho Alves, M., Pozza, E.A., Neto, H.S.: Detection of coffee berry necrosis by digital image processing of landsat 8 oli satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 85, 101983 (2020)
dc.relationNzimande, N., Mutanga, O., Kiala, Z., Sibanda, M.: Mapping the spatial distribution of the yellowwood tree (Podocarpus henkelii) in the Weza-Ngele forest using the newly launched Sentinel-2 multispectral imager data. South Afr. Geogr. J. 1–19 (2020)
dc.relationMarin, D.B., de Carvalho Alves, M., Pozza, E.A., Belan, L.L., de Oliveira Freitas, M.L.: Multispectral radiometric monitoring of bacterial blight of coffee. Precis. Agric. 20(5), 959–982 (2019)
dc.relationOliveira, A.J., Assis, G.A., Guizilini, V., Faria, E.R., Souza, J.R.: Segmenting and detecting nematode in coffee crops using aerial images. In: International Conference on Computer Vision Systems, pp. 274–283. Springer, Cham (2019)
dc.relationFolch-Fortuny, A., Prats-Montalbán, J.M., Cubero, S., Blasco, J., Ferrer, A.: VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits. Chemometr. Intell. Lab. Syst. 156, 241–248 (2016)
dc.relationChemura, A., Mutanga, O., Sibanda, M., Chidoko, P.: Machine learning prediction of coffee rust severity on leaves using spectroradiometer data. Trop. Plant Pathol. 43(2), 117–127 (2018)
dc.relationAmelec, V.: Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv. Sci. Lett. 21(5), 1406–1408 (2015)
dc.relationKatsuhama, N., Imai, M., Naruse, N., Takahashi, Y.: Discrimination of areas infected with coffee leaf rust using a vegetation index. Remote Sens. Lett. 9(12), 1186–1194 (2018)
dc.relationIzquierdo, N.V., Lezama, O.B.P., Dorta, R.G., Viloria, A., Deras, I., Hernández-Fernández, L.: Fuzzy logic applied to the performance evaluation. Honduran coffee sector case. In: International Conference on Sensing and Imaging, pp. 164–173. Springer, Cham(2018)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.sourceAdvances in Intelligent Systems and Computing
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089716858&doi=10.1007%2f978-3-030-53036-5_21&partnerID=40&md5=a061f6acfd1ce0ab466fc6216508eea7
dc.subjectCoffee production
dc.subjectDetection of diseases
dc.subjectMultispectral image analysis
dc.titleMultispectral image analysis for the detection of diseases in coffee production
dc.typePre-Publicación
dc.typehttp://purl.org/coar/resource_type/c_816b
dc.typeText
dc.typeinfo:eu-repo/semantics/preprint
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/redcol/resource_type/ARTOTR
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución