dc.creatorViloria, Amelec
dc.creatorWang, Guojun
dc.creatorGaitan, Mercedes
dc.date2021-01-22T23:49:38Z
dc.date2021-01-22T23:49:38Z
dc.date2020
dc.date.accessioned2023-10-03T19:52:31Z
dc.date.available2023-10-03T19:52:31Z
dc.identifierhttps://hdl.handle.net/11323/7758
dc.identifierhttps://doi.org/10.1007/978-981-32-9889-7_3
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172877
dc.descriptionThe research aims to describe the CRISP-DM method to identify optimal customer groups that are likely to migrate from a prepaid to postpaid plan in order to formulate an improvement plan in call management by sorting the database. The logistic regression model was applied to analyze the characteristics generated by the purchase of different services. In this sense, groups differentiated by their probability of sales success (migrating from a prepaid to postpaid plan) were found, as segments that reflect needs and characteristics that allow to design marketing actions focused on the objective of increasing the effectiveness, contactability, and sales.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation1. Pineda Lezama, O., Gómez Dorta, R.: Techniques of multivariate statistical analysis: an application for the Honduran banking sector. Innov.: J. Sci. Technol. 5(2), 61–75 (2017)
dc.relation2. Viloria, A., Lis-Gutierrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (Big Data). In: Tan, Y., Shi, Y., Tang, Q. (Eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol. 10943. Springer, Cham (2018)
dc.relation3. Lee, A., Taylor, P., Kalpathy-Cramer, J.: A Tufail Machine learning has arrived! Ophthalmology 124, 1726–1728 (2017)
dc.relation4. Yao, L.: The present situation and development tendency of higher education quality evaluation in Western Countries, p. 2006. Educ. Beef, Priv (2006)
dc.relation5. Gregorutti, B., Michel, B., Saint-Pierre, P.: Grouped variable importance with random forests and application to multiple functional data analysis. Comput. Stat. Data Anal. 90, 15–35 (2015)
dc.relation6. Guo, Y., Hastie, T., Tibshirani, R.: Regularized linear discriminant analysis and its application in microarrays. Biostatistics 8(1), 86–100 (2006)
dc.relation7. Wickramarachchi, D., Robertson, B., Reale, M., Price, C., Brown, J.: HHCART: an oblique decision tree. Comput. Stat. Data Anal. 96, 12–23 (2016)
dc.relation8. Hong, S., Yang, D., Park, B., et al.: An efficient intra-mode decision method for HEVC. SIViP 10(6), 1–9 (2016)
dc.relation9. Kavzoglu, T., Sahin, E.K., Colkesen, I.: An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district. Nat. Hazards 76, 471–496 (2015)
dc.relation10. Lei, J., Sun, Z., Gu, Z., Zhu, T., Ling, N., Wu, F.: Simplified search algorithm for explicit wedgelet signalization mode in 3D-HEVC. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, pp. 805–810 (2017)
dc.relation11. Zhao, J., Zhao, X., Zhang, W., et al.: An efficient depth modeling mode decision algorithm for 3D-HEVC depth map coding. Optik Int. J. Light Electron Opt. 127(24), 12048–12055 (2016)
dc.relation12. Aghdam, I.N., Varzandeh, M.H.M., Pradhan, B.: Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran). Environ. Earth Sci. 75, 553 (2016)
dc.relation13. Liu, P., He, G., Xue, S., Li, Y.: A fast mode selection for depth modelling modes of intra depth coding in 3D-HEVC. In: 2016 Visual Communications and Image Processing (VCIP), Chengdu, pp. 1–4 (2016)
dc.relation14. Guo, R., He, G., Li, Y., Wang, K.: Fast algorithm for prediction unit and mode decisions of intra depth coding in 3D-HEVC. In: 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, pp. 1121–1125 (2016)
dc.relation15. Bonerge Pineda Lezama, O., Varela Izquierdo, N., Pérez Fernández, D., Gómez Dorta, R.L., Viloria, A., Romero Marín, L.: Models of multivariate regression for labor accidents in different production sectors: comparative study. In: Tan, Y., Shi, Y., Tang, Q. (Eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol. 10943. Springer, Cham (2018)
dc.relation16. Izquierdo, N.V., Lezama, O.B.P., Dorta, R.G., Viloria, A., Deras, I., Hernández-Fernández, L.: Fuzzy logic applied to the performance evaluation. honduran coffee sector case. In: Tan, Y., Shi, Y., Tang, Q. (Eds.) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science, vol. 10942. Springer, Cham (2018)
dc.relation17. Yao, Y., Zhao, X., Du, H., Zhang, Y., Zhang, G., Rong, J.: Classification of fatigued and drunk driving based on decision tree methods: a simulator study. Int. J. Environ. Res. Public Health 2019, 16 (1935)
dc.relation18. Li, Y.Z., Zhang, N., Liu, F., et al.: Application of apriori algorithm based on information theory optimization in traffic accident analysis. Inf. Syst. Eng. 10, 80–84 (2016)
dc.relation19. Lombardi, D.A., Horrey, W.J., Courtney, T.K.: Age-related differences in fatal intersection crashes in the United States. Accid. Anal. Prev. 99(Pt A), 20 (2016)
dc.relation20. Liu, Z.Q., Wang, L., Zhang, A.H.: Study on the mechanism of traffic accidents in wusongtian highway based on bayesian model. J. Chongqing Univ. Technol. 1, 43–49 (2018)
dc.relation21. Markov, Z., Russell, I.: An introduction to the WEKA data mining system[C]. In: Sigcse Conference on Innovation & Technology in Computer Science Education, pp. 367–368. ACM (2006)
dc.relation22. Gao, Y., Dong, X., Tian, F.: Analysis of current situation of highway traffic safety and management countermeasures. China Saf. Prod. Sci. Technol. 11(10), 110–115 (2015)
dc.relation23. Amelec, V.: Validation of strategies to reduce exhausted shelf products in a pharmaceutical chain. Adv. Sci. Lett. 21(5), 1403–1405 (2015)
dc.relation24. Amelec, V.: Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv. Sci. Lett. 21(5), 1406–1408 (2015)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceSmart Innovation, Systems and Technologies
dc.sourcehttps://link.springer.com/chapter/10.1007/978-981-32-9889-7_3
dc.subjectCall center
dc.subjectCRISP-DM
dc.subjectLogistic regression model.
dc.titleSales segmentation for a mobile phone service through logistic regression algorithm
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución