dc.creatorAmaris, Carlos
dc.creatorMiranda, Bárbara
dc.creatorBALBIS MOREJON, MILEN
dc.date2020-11-13T19:53:02Z
dc.date2020-11-13T19:53:02Z
dc.date2020-11-01
dc.date.accessioned2023-10-03T19:51:50Z
dc.date.available2023-10-03T19:51:50Z
dc.identifier2451-9049
dc.identifierhttps://hdl.handle.net/11323/7308
dc.identifierhttps://doi.org/10.1016/j.tsep.2020.100684
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172762
dc.descriptionIn this paper, the performance of a gas/oil heat recovery unit is assessed experimentally and by the development of an Aspen model and artificial neural networks. The heat recovery unit is a cross-flow heat exchanger used to recover the residual heat of the exhaust gases coming from a microturbine to drive an absorption chiller. The test facility consists mainly of a microturbine, a heat recovery unit, and an air-cooled absorption chiller. The experiments were conducted at partial power loads and different thermal oil mass flows. Regarding the models, the Aspen model depends on inlet conditions, the mechanical description of the heat recovery unit, and the fluids thermophysical properties, whereas the ANN model consists of 3 trained artificial neurons, 4 inputs (inlet flows and temperatures), and 2 outputs (thermal load and overall heat transfer coefficient). The experimental tests show that the recovery unit recovers from 18.8 kW to 8.1 kW when the microturbine power output is varied from 23 kWe to 4 kWe. Results also show that the overall heat transfer coefficient ranges between 243 W.m−2.K−1 and 89 W.m−2.K−1, while they evidence that the overall heat transfer resistance is controlled by the exhaust gases heat transfer resistance. Furthermore, simulation results show that the Aspen model predicts the heat recovery unit thermal load and overall heat transfer coefficient with average relative differences of 0.93% and 11.27%, respectively, to the experiments. The ANN model evidences average relative differences of 0.51% and 3.48% for the thermal load and overall heat transfer coefficient, respectively.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceThermal Science and Engineering Progress
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S2451904920302043
dc.subjectCooling and power
dc.subjectEnergy cogeneration
dc.subjectExhaust gasesHeat exchanger
dc.subjectHeat recovery
dc.subjectThermal oil
dc.titleExperimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system
dc.typePre-Publicación
dc.typehttp://purl.org/coar/resource_type/c_816b
dc.typeText
dc.typeinfo:eu-repo/semantics/preprint
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/redcol/resource_type/ARTOTR
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución