dc.relation | [1] Nguyen, T. T., Nguyen, T. T., Truong, A. V., Nguyen, Q. T.,
& Phung, T. A. (2017). Multi-objective electric distribution
network reconfiguration solution using runner-root
algorithm. Applied Soft Computing, 52, 93–108.
https://doi.org/10.1016/j.asoc.2016.12.018
[2] Abdelaziz, A. Y., Osama, R. A., & Elkhodary, S. M. (2013).
Distribution Systems Reconfiguration Using Ant Colony
Optimization and Harmony Search Algorithms. Electric
Power Components and Systems, 41(5), 537–554.
https://doi.org/10.1080/15325008.2012.755232
[3] Herazo, E., Quintero, M., Candelo, J., Soto, J., & Guerrero,
J. (2015). Optimal power distribution network
reconfiguration using Cuckoo Search. In The 4th
International Conference on Electric Power and Energy
Conversion Systems (EPECS) (pp. 1–6). IEEE.
https://doi.org/10.1109/EPECS.2015.7368548
[4] Farahani, V., Vahidi, B., & Abyaneh, H. A. (2012).
Reconfiguration and Capacitor Placement Simultaneously
for Energy Loss Reduction Based on an Improved
Reconfiguration Method. IEEE Transactions on Power
Systems, 27(2), 587–595.
https://doi.org/10.1109/TPWRS.2011.2167688
[5] Garcia-Martinez, S. & Espinosa-Juarez, E. (2011).
Reconfiguration of power systems by applying Tabu search
to minimize voltage sag indexes. In 2011 North American
Power Symposium (pp. 1–6). IEEE.
https://doi.org/10.1109/NAPS.2011.6025100
[6] García-Martínez, S. & Espinosa-Juárez, E. (2013). Optimal
Reconfiguration of Electrical Networks by Applying Tabu
Search to Decrease Voltage Sag Indices. Electric Power
Components and Systems, 41(10), 943–959.
https://doi.org/10.1080/15325008.2013.801053
[7] Glover, F. (1989). Tabu Search—Part I. ORSA Journal on
Computing, 1(3), 190–206. https://doi.org/10.1287/ijoc.2.1.4
[8] Graditi, G., Di Silvestre, M. L., La Cascia, D., Riva
Sanseverino, E., & Zizzo, G. (2016). On multi-objective
optimal reconfiguration of MV networks in presence of
different grounding. Journal of Ambient Intelligence and
Humanized Computing, 7(1), 97–105.
https://doi.org/10.1007/s12652-015-0304-9
[9] Gu, C., Ji, J., & Liu, L. (2014). Research of immune
algorithms for reconfiguration of distribution network with
distributed generations. In The 26th Chinese Control and
Decision Conference (2014 CCDC) (pp. 2156–2160).IEEE.
https://doi.org/10.1109/CCDC.2014.6852524
[10] Gupta, N., Swarnkar, A., & Niazi, K. R. (2014). Distribution
network reconfiguration for power quality and reliability
improvement using Genetic Algorithms. International
Journal of Electrical Power & Energy Systems, 54, 664–671.
https://doi.org/10.1016/j.ijepes.2013.08.016
[11] Abazari, S. & Soudejani, M. H. (2015). A new technique for
efficient reconfiguration of distribution networks. Scientia
Iranica, 22(6), 2516–2526.
[12] Abdelaziz, A. Y., Mohamed, F. M., Mekhamer, S. F., &
Badr, M. A. L. (2010). Distribution system reconfiguration
using a modified Tabu Search algorithm. Electric Power
Systems Research, 80(8), 943–953.
https://doi.org/10.1016/j.epsr.2010.01.001
[13] Abdelaziz, A. Y., Osama, R. A., & El-Khodary, S. M.
(2012). Reconfiguration of distribution systems for loss
reduction using the hyper-cube ant colony optimisation
algorithm. IET Generation, Transmission & Distribution,
6(2), 176. https://doi.org/10.1049/iet-gtd.2011.0281
[14] Asrari, A., Lotfifard, S., & Ansari, M. (2016).
Reconfiguration of Smart Distribution Systems with Time
Varying Loads Using Parallel Computing. IEEE
Transactions on Smart Grid, 1–11.
https://doi.org/10.1109/TSG.2016.2530713
[15] Liu, L. H., Wang, Y., Yao, S. J., Ma, L. Y., & Yang, J.
(2012). Distribution Network Reconfiguration with
Distributed Generation Based on Cloud Genetic Algorithm.
Advanced Materials Research, 529, 306–310.
https://doi.org/10.4028/www.scientific.net/AMR.529.306
[16] Quintero-Duran, M., Candelo, J. E., & Sousa, V. (2017).
Recent Trends of the Most Used Metaheuristic Techniques
for Distribution Network Reconfiguration. Journal of
Engineering Science and Technology Review, 10(5), 159–
173. https://doi.org/10.25103/jestr.105.20
[17] Mirjalili, S., Mirjalili, S. M., & Yang, X.-S. (2014). Binary
bat algorithm. Neural Computing and Applications, 25(3–4),
663–681. https://doi.org/10.1007/s00521-013-1525-5
[18] Amanulla, B., Chakrabarti, S., & Singh, S. N. (2012).
Reconfiguration of Power Distribution Systems Considering
Reliability and Power Loss. IEEE Transactions on Power
Delivery, 27(2), 918–926.
https://doi.org/10.1109/TPWRD.2011.2179950
[19] Alonso, F. R., Oliveira, D. Q., & Zambroni de Souza, A. C.
(2015). Artificial Immune Systems Optimization Approach
for Multiobjective Distribution System Reconfiguration.
IEEE Transactions on Power Systems, 30(2), 840–847.
https://doi.org/10.1109/TPWRS.2014.2330628
[20] Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired
Algorithm. In Nature Inspired Cooperative Strategies for
Optimization (NICSO 2011) (Vol. 284, pp. 65–74).
https://doi.org/10.1007/978-3-642-12538-6_6
[21] Peres, W., Silva Júnior, I. C., & Passos Filho, J. A. (2018).
Gradient based hybrid metaheuristics for robust tuning of
power system stabilizers. International Journal of Electrical
Power & Energy Systems, 95, 47–72.
https://doi.org/10.1016/j.ijepes.2017.08.014
[22] Niu, T., Wang, J., Zhang, K., & Du, P. (2018). Multi-stepahead wind speed forecasting based on optimal feature
selection and a modified bat algorithm with the cognition
strategy. Renewable Energy, 118, 213–229.
https://doi.org/10.1016/j.renene.2017.10.075
[23] Montgomery, D. C. (2006). Design and Analysis of
Experiments. Technometrics (Vol. 48).
https://doi.org/10.1198/tech.2006.s372
[24] Quintero-Duran, M., Candelo-Becerra, J. E., & Soto-Ortiz,
J. D. (2019). A Modified Backward/Forward Sweep-based
Method for Reconfiguration of Unbalanced Distribution
Networks. International Journal of Electrical and Computer
Engineering, 9(1), 85-101.
https://doi.org/10.11591/ijece.v9i1.pp.85-101
[25] Kennedy, J., & Eberhart, R. C. (1997). Discrete binary
version of the particle swarm algorithm. In Proceedings of
the IEEE International Conference on Systems, Man and
Cybernetics (Vol. 5, pp. 4104–4108). Retrieved from
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
0031352450&partnerID=40&md5=a713161d139c8afba89f
6b67c67696c7
[26] Nara, K., Shiose, A., Kitagawa, M., & Ishihara, T. (1992).
Implementation of genetic algorithm for distribution systems
loss minimum re-configuration. IEEE Transactions on
Power Systems, 7(3), 1044–1051 | |