dc.relation | 1. Srbinovska M, Gavrovski C, Dimcev V, et al. Environmental parameters monitoring in precision agriculture
using wireless sensor networks. J Clean Prod 2015; 88:
297–307.2. Montoya FG, Go´mez J, Cama A, et al. A monitoring
system for intensive agriculture based on mesh networks
and the android system. Comput Electron Agr 2013; 99:
14–20.
3. Cama-Pinto A, Gil-Montoya F, Go´mez-Lo´pez J, et al.
Wireless surveillance system for greenhouse crops (Dyna.
81,184,164.), Revista DYNA, 2014, http://www.scielo.org.co/pdf/dyna/v81n184/v81n184a22.pdf
4. Urbano-molano Aparicio F. Redes de Sensores Inala´mbricos Aplicadas a Optimizacio´n en Agricultura de Precisio´n para Cultivos de Cafe´ en Colombia. J Cienc Ing
2012; 5(1): 46–52.
5. Xiao L and Guo L. The realization of precision agriculture monitoring system based on wireless sensor network.
In: Proceedings of the international conference on computer and communication technologies in agriculture engineering (CCTAE’10), Chengdu, China, 12–13 June 2010,
pp.89–92. New York: IEEE.
6. Ministerio de Educacio´n, 2009, http://www.mineducacion.gov.co/cvn/1665/w3-article-200749.html (accessed
28 August 2016).
7. Cirstea C, Cernaianu M and Gontean A. Packet loss
analysis in wireless sensor networks routing protocols.
In: Proceedings of the 2012 35th international conference
on telecommunications and signal processing (TSP), Prague, 3–4 July 2012, pp.37–41. New York: IEEE.
8. Bas CU and Ergen SC. Spatio-temporal characteristics
of link quality in wireless sensor networks. In: Proceedings of the 2010 IEEE wireless communications and networking conference (WCNC), Shanghai, China, 1–4
April 2012, pp.1152–1157. New York: IEEE.
9. Goldsmith A. Wireless communications. New York:
Cambridge University Press, 2005.
10. Al-Busaidi AM. Development of an educational environment for online control of a biped robot using MATLAB
and Arduino. In: Proceedings of the 2012 9th FranceJapan & 7th Europe-Asia congress on mechatronics
(MECATRONICS)/13th int’l workshop on research and
education in mechatronics (REM), Paris, France, 21–23
November 2012, pp.337–344. New York: IEEE.
11. Al-kadi T, Al-tuwaijri Z and Al-omran A. Arduino Wi-Fi
network analyzer. Proced Comput Sci 2013; 21: 522–529.
12. Kornuta JA, Nipper ME and Dixon JB. Low-cost microcontroller platform for studying lymphatic biomechanics
in vitro. J Biom 2013; 46(1): 183–186.
13. Xu J, Liu W, Lang F, et al. Distance measurement model
based on RSSI in WSN. Wirel Sens Netw 2010; 2(8):
606–611.
14. Lee J-H, Choi J, Lee W-H, et al. Measurement and analysis on land-to-ship offshore wireless channel in 2.4 GHz.
IEEE Wirel Commun Lett 2017; 6(2): 222–225.
15. Biaou U, Sadoudi L, Bocquet M, et al. Modeling of ZigBee (IEEE 802.15.4) channel in rail environment for intelligent transport. In: Proceedings of the 2015 4th IEEE
international conference on advanced logistics and transport, IEEE ICALT 2015, art. no. 7136637, 2015, pp.293–
298.
16. Seybold J. Introduction to RF propagation. Hoboken, NJ:
Wiley Interscience, 2005.
17. Chrysikos T, Georgopoulos G and Kotsopoulos S. Wireless channel characterization for a home indoor
propagation topology at 2.4 GHz. Proceedings of the
wireless telecommunications symposium, New York, 13–
15 April 2011, article no. 5960879. New York: IEEE.
18. Mahalin NH, Sharifah HS, Syed Yusof SK, et al. RSSI
measurements for enabling IEEE 802.15.4 coexistence
with IEEE 802.11b/g. In: Proceedings of the IEEE region
10 annual international conference on TENCON, Singapore, 23–26 January 2009, pp.1–4. New York: IEEE.
19. Hamida E, Ben Lyon I, Chelius G, et al. Investigating the
impact of human activity on the performance of wireless
networks—an experimental approach. In: Proceedings of
the 2010 IEEE international symposium on a world of wireless mobile and multimedia networks (WoWMoM), Montreal, QC, Canada, 14–17 June 2010. New York: IEEE.
20. Pellegrini RM, Persia S, Volponi D, et al. 2011; RF propagation analysis for ZigBee Sensor Network using RSSI
measurements. In: Proceedings of the 2011 2nd international conference on wireless communication, vehicular
technology, information theory and aerospace & electronic
systems technology (Wireless VITAE), Chennai, India,
28 Febraury–3 March 2011, pp.1–5. New York: IEEE.
21. Harun A, Ramli MF, Kamarudin LM, et al. Comparative performance analysis of wireless RSSI in wireless
sensor networks motes in tropical mixed-crop precision
farm. In: Proceedings of the 2012 third international conference on intelligent systems modelling and simulation,
Kota Kinabalu, Malaysia, 8–10 February 2012, pp.606–
610. New York: IEEE.
22. Kodali RK, Rawat N and Boppana L. WSN sensors for
precision agriculture. In: Proceedings of the region 10
symposium, Kuala Lumpur, Malaysia, 14–16 April 2014,
pp.643–648. New York: IEEE.
23. Howell B, Anderson E and Flores A. A low cost wireless
sensor network for landslide hazard monitoring. In Proceedings of the geoscience and remote sensing symposium
(IGARSS), Munich, 22–27 July 2012, pp.4793–4796.
New York: IEEE.
24. Zamora R. Ana´lisis de requerimiento para la implementacio´n de Laboratorios Remotos. Barranquilla, Colombia:
Educosta, 2011.
25. Mahmoud KH. Data collection and processing from distributed system of wireless sensors. Master Thesis,
Masaryk University, Brno, 2013.
26. Caicedo-Ortiz J, Coll MAA and Cama-Pinto A. Modelo
de despliegue de una WSN para la medicio´n de las variables clima´ticas que causan fuertes precipitaciones. WSN
deployment model for measuring climate variables that
cause strong precipitation, pp.106–115, http://www.scielo.org.co/pdf/prosp/v13n1/v13n1a11.pdf
27. Libelium, http://www.libelium.com/products/waspmote
28. Faludi R. Building wireless sensor networks. 4th ed. USA:
Brian Jepson, 2012, p.32.
29. Arnil J, Punsawad Y and Wongsawat Y. Wireless sensor
network-based smart room system for healthcare monitoring. In: Proceedings of the 2011 IEEE international
conference on robotics and biomimetics (ROBIO), Karon
Beach, Phuket, Thailand, 7–11 December 2011, pp.2073–
2076. New York: IEEE.
30. Benkic K, Malajner M, Planinsic P, et al. Using RSSI
value for distance estimation in wireless sensor networks
based on ZigBee. In: Proceedings of the 15th international
conference on systems, signals and image processing,
Bratislava, 25–28 June 2008, pp.303–306. New York:
IEEE.
31. Chrysikos T and Kotsopoulos S. Characterization of
large-scale fading for the 2.4 GHz channel in obstacledense indoor propagation topologies. Proceedings of the
2012 IEEE vehicular technology conference, Quebec City,
QC, Canada, 3–6 September 2012, article no. 6399239.
New York: IEEE.
32. Kurt S and Tavli B. Path-loss modeling for wireless sensor networks: a review of models and comparative evaluations. IEEE Antenn Propag M 2016; 59(1): 18–37.
33. Farahani S. ZigBee wireless networks and transceivers. 1st
ed. Oxford: Elsevier Ltd., 2008, p.173. | |