dc.creatorP. Rebolledo, Liceth
dc.creatorA. Arana, Victoria
dc.creatorTrilleras, Jorge
dc.creatorE. Barros, Gustavo
dc.creatorGonzález-Solano, Arturo J.
dc.creatorMaury-Ardila, Henry
dc.date2019-07-11T16:14:52Z
dc.date2019-07-11T16:14:52Z
dc.date2019-04-18
dc.date.accessioned2023-10-03T19:50:46Z
dc.date.available2023-10-03T19:50:46Z
dc.identifier2073-4441
dc.identifierhttp://hdl.handle.net/11323/4944
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172596
dc.descriptionThe combined coagulation-solar photo Fenton treatment of leachate from the sanitary landfill located in Atlantico-Colombia was investigated. Firstly, the efficiency of two alternative combined treatments for the reduction of chemical oxygen demand in leachate was assessed, coagulation with poly-aluminum chloride followed by solar photo-Fenton process (Treatment 1) and coagulation with FeCl3·6H2O followed by ferrioxalate-induced solar photo-Fenton process (Treatment 2). Afterwards, treatments 1 and 2 were compared with the treatment currently used in the sanitary landfill (only coagulation with poly-aluminum chloride), in terms of efficiency and costs. An optimization study of alternative treatments was performed combining central-composite experimental design and response surface methodology. The optimum conditions resulted in a chemical oxygen demand reduction of 73 % and 80 % for Treatment 1 and 2, respectively. Both alternative treatments for the leachate are more efficient than the treatment currently used in the sanitary landfill (chemical oxygen demand reduction of 20 %). In terms of costs, treatment 1 would be the most competitive to implement in the sanitary landfill, since this would have an increase of 13.3 % in the total unitary cost compared to an increase of 39.5 % of treatment 2.
dc.formatapplication/pdf
dc.languageeng
dc.publisherWater
dc.relationhttps://doi.org/10.3390/w11071351
dc.relation1. Zhang, H.; Wu, X.; Li, X. Oxidation and coagulation removal of COD from landfill leachate by Fered-Fenton process. Chem. Eng. J. 2012, 210, 188–194. [CrossRef] 2. Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill Leachate Treatment: Review and Opportunity. J. Hazard. Mater. 2008, 150, 468–493. [CrossRef] [PubMed] 3. Boumechhour, F.; Rabah, K.; Lamine, C.; Said, B.M. Treatment of landfill leachate using Fenton process and coagulation/flocculation. Water Environ. J. 2013, 27, 114–119. [CrossRef] 4. Risch, E.; Loubet, P.; Núñez, M.; Roux, P. How environmentally significant is water consumption during wastewater treatment? Application of recent developments in LCA to WWT technologies used at 3 contrasted geographical locations. Water Res. 2014, 57, 20–30. [CrossRef] [PubMed] 5. Moradi, M.; Ghanbari, F. Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton processes: Biodegradability improvement. J. Water Process. Eng. 2014, 4, 67–73. [CrossRef] 6. Kumar, S.; Narsi, B. Coagulation of landfill leachate by FeCl3 : Process optimization using Box-Behnken design (RMS). Appl. Water Sci. 2015, 7, 1943–1953. [CrossRef] 7. Klauson, D.; Kivi, A.; Kattel, E.; Klein, K.; Viisimaa, M.; Bolobajev, J.; Velling, S.; Gol, A.; Tenno, T.; Trapido, M. Combined processes for wastewater purification: Treatment of a typical landfill leachate with a combination of chemical and biological oxidation processes. J. Chem. Biotechnol. 2015, 90, 1527–1536. [CrossRef] 8. Huang, J.; Chen, J.; Xie, Z.; Xu, X. Treatment of nanofiltration concentrates of mature landfill leachate by a coupled process of coagulation and internal micro-electrolysis adding hydrogen peroxide. J. Environ. Technol. 2015, 36, 1001–1007. [CrossRef] 9. Oloibiri, V.; Ufomba, I.; Chys, M.; Audenaert, W.T.M.; Demeestere, K.; Van Hulle, S.W.H. A comparative study on the efficiency of ozonation and coagulation-flocculation as pretreatment to actived carbon adsorption of biologically stabilized landfill leachate. Waste Manag. 2015, 43, 335–342. [CrossRef] 10. Huang, D.; Hu, C.; Zeng, G.; Cheng, M.; Xu, P.; Gong, X.; Wang, R.; Xue, W. Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. Sci. Total Environ. 2017, 574, 1599–1610. [CrossRef] 11. Silva, T.F.C.V.; Soares, P.A.; Manenti, D.R.; Fonseca, A.; Saraiva, I.; Boaventura, R.A.R.; Vilar, V.J.P. An innovative multistage treatment system for sanitary landfill leachate depuration: Studies at pilot-scale. Sci. Total Environ. 2017, 576, 99–117. [CrossRef] [PubMed] 12. Luo, K.; Pang, Y.; Li, X.; Chen, F.; Liao, X.; Lei, M.; Song, Y. Landfill leachate treatment by coagulation/ flocculation combined with microelectrolysis-Fenton processes. Environ. Technol. 2018, 7, 1–9. [CrossRef] [PubMed] 13. Liu, X.; Li, X.-M.; Yang, Q.; Yue, X.; Shen, T.T.; Zheng, W.; Luo, K.; Sun, Y.-H.; Zeng, G.-M. Landfill leachate pretreatment by coagulation-flocculation process using iron-based coagulants: Optimization by response surface methodology. Chem. Eng. J. 2012, 200–202, 39–51. [CrossRef] 14. Vedrenne, M.; Vasquez-Medrano, R.; Prato-Garcia, D.; Frontana-Uribe, B.A.; Ibanez, J.G. Characterization and detoxification of a mature landfill leachate using a combined coagulation-flocculation/photo Fenton treatment. J. Hazard. Mater. 2012, 205–206, 208–215. [CrossRef] [PubMed] 15. Pereira, J.H.O.S.; Queirós, D.; Reis, A.C.; Nunes, O.C.; Borges, M.T.; Boaventura, R.A.R.; Vilar, V.J.P. Process enhancement at near neutral pH of a homogeneous photo-Fenton reaction using ferricarboxylate complexes: Application to oxytetracycline degradation. Chem. Eng. J. 2014, 253, 217–228. [CrossRef] 16. Castilla-Caballero, D.; Machuca-Martínez, F.; Bustillo-Lecompte, C.; Colina-Márquez, J. Photocatalytic Degradation of Commercial Acetaminophen: Evaluation, Modeling and Scaling-Up of Photoreactors. Catalysts 2018, 8, 179. [CrossRef] 17. Standard Methods for Examination of Water and Wastewater, 21st ed.; APHA AWWA WEF: Washington, DC, USA, 2005; pp. 5–2 and 5–19. 18. U.S. EPA. Method 3015 A (SW-846): Microwave Assisted Acid Digestion of Aqueous Samples and Extracts, Revision 1; U.S. Government Printing Office: Washington, DC, USA, 2007 19. Montgomery, D.C. Desing and Analysis of Experiments, 8th ed.; John Wiley and Sons: New York, NY, USA, 2012; pp. 478–544. 20. Statgraphics Centurion XVI User’s Guide; Statpoint Technologies Inc.: Warrenton, VA, USA, 2009; pp. 257–279. 21. Amor, C.; De Torres-Socías, E.; Peres, J.A.; Maldonado, M.I.; Oller, I.; Malato, S.; Lucas, M.S. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar-Fenton process. J. Hazard. Mater. 2015, 286, 261–268. [CrossRef] 22. Pereira, J.H.O.S.; Reis, A.C.; Nunes, O.C.; Borges, M.T.; Vilar, V.J.P.; Boaventura, R.A.R. Assessment of solar driven TiO2 -assisted photocatalysis efficiency on amoxicillin degradation. Environ. Sci. Pollut. Res. 2013, 21, 1292–1303. [CrossRef] 23. Wang, Z.P.; Zhang, Z.; Lin, Y.J.; Deng, N.S.; Tao, T.; Zhuo, K. Landfill leachate treatment by coagulation-photooxidation process. J. Hazard. Mater. 2002, 95, 153–159. [CrossRef] 24. Monteagudo, J.M.; Durán, A.; Culebradas, R.; San Martín, I.; Carnicer, A. Optimization of pharmaceutical wastewaster treatment by solar/ferrioxalate photo-catalysis. J. Environ. Manag. 2013, 128, 210–219. [CrossRef] 25. Estrada-Arriaga, E.B.; Zepeda-Aviles, J.A.; García-Sánchez, L. Post-treatment of real oil refinery effluent with high concentrations of phenols using photo-ferrioxalate and Fenton’s reactions with membrane process step. Chem. Eng. J. 2016, 285, 508–516. [CrossRef] 26. Huo, S.; Xi, B.; Yu, H.; He, L.; Fan, S.; Liu, H. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages. J. Environ. Sci. 2008, 20, 492–498. [CrossRef] 27. GilPavas, E.; Dobrosz-Gomez, I.; Gomez-García, M.A. Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. J. Environ. Manag. 2017, 191, 189–197. [CrossRef] [PubMed] 28. Tatsi, A.A.; Zouboulis, A.I.; Matis, K.A.; Samaras, P. Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere 2003, 53, 737–744. [CrossRef] 29. Wang, Z.P.; Shui, Y.; He, M.; Liu, P. Comparison of flocs characteristics using before and after composite coagulants under different coagulation mechanisms. Biochem. Eng. J. 2017, 121, 107–117. [CrossRef] 30. Long, Y.; Xu, J.; Shen, D.; Du, Y.; Feng, H. Effective removal of contaminants in landfill leachate membrane concentrates by coagulation. Chemosphere 2017, 167, 512–519. [CrossRef] 31. Li, W.; Zhou, Q.; Hua, T. Removal of Organic Matter from Landfill Leachate by Advanced Oxidation Processes: A Review. Int. J. Chem. Eng. 2010, 2010, 1–10. [CrossRef] 32. Ministry of Environment and Sustainable Development. Resolution 0631/2015. Available online: http://corponor. gov.co/corponor/RESOLUCION%20MINAMBIENTE%20NACIONAL%20631%20DE%202015.pdf (accessed on 5 April 2019). 33. Amiri, A.; Mohammad, R.S. Multi-response optimization of Fenton process for applicability assessment in landfill leachate treatment. Waste Manag. 2014, 32, 2528–2536. [CrossRef] 34. Durán, A.; Monteagudo, J.M.; Gil, J.; Expósito, A.J.; San Martín, I. Solar-photo-Fenton treatment of wastewater from the beverage industry: Intensification with ferrioxalate. Chem. Eng. J. 2015, 270, 612–620. [CrossRef] 35. Umar, M.; Aziz, H.A.; Yusoff, M.S. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag. 2010, 30, 2113–2121. [CrossRef] 36. Giannakis, S.; López, M.I.P.; Spuhler, D.; Pérez, J.A.S.; Ibáñez, P.F.; Pulgarin, C. Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 2: A review of the applications for drinking water and wastewater disinfection. Appl. Catal. B 2016, 198, 431–446. [CrossRef] 37. Kim, S.; Geissen, S.; Vogelpohl, A. Landfill leachate treatment by a photoassisted fenton reaction. Water Sci. Technol. 1997, 35, 239–248. [CrossRef] 38. Sarria, V.; Deront, M.; Péringer, P.; Pulgarin, C. Degradation of a biorecalcitrant dye precursor present in industrial wastewaters by a new integrated iron (III) photoassisted-biological treatment. Appl. Catal. B Environ. 2003, 40, 231–246. [CrossRef] 39. Monteagudo, J.M.; Durán, A.; Corral, J.M.; Carnicer, A.; Frades, J.M.; Alonso, M.A. Ferrioxalate-induced solar photo-Fenton system for treatment of winery wastewaters. Chem. Eng. J. 2012, 181–182, 281–288. [CrossRef] 40. Seibert, D.; Diel, T.; Welter, J.B.; de Souza, A.L.; Módenes, A.N.; Espinoza-Quiñones, F.R.; Borda, F.H. Performance of photo-Fenton process mediated by Fe (III)-carboxylate complexes applied to degradation of landfill leachate. J. Environ. Chem. Eng. 2017, 5, 4462–4470. [CrossRef] 41. Expósito, A.J.; Monteagudo, J.M.; Durán, A.; Martín, I.S.; González, L. Study of the intensification of solar photo-Fenton degradation of carbamazepine with ferrioxalate complexes and ultrasound. J. Hazard. Mater. 2018, 342, 597–605. [CrossRef] [PubMed] 42. Miralles-Cuevas, S.; Daraowna, D.; Wanag, A.; Molzia, S.; Malato, S.; Oller, I. Comparison of UV/H2O2 , UV/S2O8 2−, solar/Fe(II)/H2O2 and solar/Fe(II)/S2O8 2- at pilot plant scale for the elimination of micro-contaminants in natural water: An economic assessment. Chem. Eng. J. 2017, 310, 514–524. [CrossRef]
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectleachates
dc.subjectcoagulation
dc.subjectsolar photo-fenton
dc.subjectferrioxalate-induced
dc.titleEfficiency of Combined Processes Coagulation/Solar Photo Fenton in the Treatment of Landfill Leachate
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución