dc.creatorMurillo, Michel
dc.creatorAcosta P, Aura
dc.creatorQuesada Q, Claudia
dc.creatorAbisambra G, Valery
dc.creatorTutikian, Bernardo
dc.creatorChrist, Roberto
dc.date2023-01-23T15:00:36Z
dc.date2023-01-23T15:00:36Z
dc.date2022
dc.date.accessioned2023-10-03T19:50:43Z
dc.date.available2023-10-03T19:50:43Z
dc.identifierMichel Murillo A, Aura Acosta P, Claudia Quesada Q, Valery Abisambra G, Bernardo F. Tutikian, Roberto Christ, Comparative experimental analysis of the fire resistance of sandwich panels with polyisocyanourate core reinforced with fiberglass fabric, Case Studies in Thermal Engineering, Volume 40, 2022, 102550, ISSN 2214-157X, https://doi.org/10.1016/j.csite.2022.102550.
dc.identifierhttps://hdl.handle.net/11323/9793
dc.identifier10.1016/j.csite.2022.102550
dc.identifier2214-157X
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172583
dc.descriptionSandwich panels are systems with structural functions that are used in the field of civil construction, currently, they are used in the construction of buildings and also as cladding for walls, ceilings, among others. This article shows the results of an experimental comparative analysis of the behavior of fire resistance in two sandwich panels with structural function composed of Polyisocyanurate (PIR) foam core and fiberglass-reinforced fabric of dimensions of 3150 mm × 2800 mm x 150 mm. The first-panel system on its face exposed to fire was coated with plaster plates while the other system with ceramic plates. The parameters subject to comparison for both systems were structural stability, tightness, and thermal insulation. For this, the fire resistance test was carried out evaluating the behavior of each of the Samples subjected to the exposure of the fire to compare with each other. According to the results obtained in this research, the materials used to shape the sandwich panel structure and the coating material influence the results of the parameters and the fire resist the behavior. Thus, in this study the plasterboard-coated system showed better performance against the evaluated parameters and a long time of resistance to fire than that of the ceramic-plated system, checking the thermal insulation benefits and fire protection qualities of the plaster.
dc.format9 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherElsevier BV
dc.publisherUnited Kingdom
dc.relationCase Studies in Thermal Engineering
dc.relation[1] F. Núnez ˜ Astray, G. Campos Martínez, J. A. Labrador San Ronnualdo y M. Sanz Septi´en, «THE fire in high rise buildings,» Spanish National Research Council, vol. 39, nº 391, pp. 35 - 38.
dc.relation[2] Special Administrative Unit (DNBC National Fire Department Colombia), 9 Agosto 2019. [En línea]. Available: https://drive.google.com/file/d/1nSosiQDyzk1UG7Z76Yoj3nUT7Gr5kUX_/view. [Último acceso: 1 Octubre 2020].
dc.relation[3] Y. Wang y, A. Foster, Experimental and numerical study of temperature developments in PIR core sandwich panels with joint, Fire Saf. J. 90 (2017) 1.
dc.relation[4] L. Colabella, A. Cisilino, A. Stocchi, y A. Ibarra, «CHARACTERIZATION of the elastic behavior of honeycomb composite panels using homogenization tools,», Comput. Mech. XXXI (2012) 1821–1837.
dc.relation[5] A. Naranjo, STUDY of the APPLICABILITY of COMPOSITE MATERIALS IN BUILDING CONSTRUCTION FIBERGLASS-REINFORCED CONCRETE, Espana. ˜
dc.relation[6] M. Garifullin, A. Shoushtarian Mofrad, K. Cabov ´ a, ´ F. Wald, H. Pasternak y K. Mela, «Translational Stiffness and Resistance of Sandwich Panel Connections at Elevated Temperature, Engineering Structures, 2022.
dc.relation[7] C. Zhao, Y. Yan, Z. Hu, L. Li, y X. Fan, «Preparation and characterization of granular silica/polyisocyanurate rigid aerogel foam composites,», Construct. Build. Mater. 93 (2015) 310.
dc.relation[8] Z. Du, W. She, W. Zuo, J. Hong, Y. Zhang, y C. Miao, «Foamed gypsum composite with high temperature heat-resistant additive: mechanical, thermal and deformation performance,», Cement Concr. Compos. 108 (2020).
dc.relation[9] P. Keerthan, y M. Mahendran, «Numerical studies of gypsum plasterboard panels under standard fire conditions,», Fire Saf. J. 53 (2012) 105.
dc.relation[10] D.I. Kolaitis, E.K. Asimakopoulou y, M.A. Founti, Fire behaviour of gypsum plasterboard wall assemblies: CFD simulation of a full-scale residential building, Case Studies in Fire Safety 7 (2017) 24.
dc.relation[11] A. Arias, R. Zaera, J. Lopez, ´ y C. Navarro, «Fabrication and Mechanical Characterization of a Composite Material with a Polymeric Matrix and Ceramic Filler,», Bulletin of the Spanish Society of Ceramics and Glass, 2003.
dc.relation[12] J. Paredes, C. P´erez, y C. Castro, «Analysis of the mechanical properties of the composite of polyester matrix reinforced with glass fiber 375 and cabuya applied to the automotive industry,», Focus UTE 8 (3) (2017).
dc.relation[13] A. Valan, y T. Sornakumar, «Design, Manufacture and Testing of Fiberglass Reinforced Parabola Trough for Parabolic Trough Solar Collectors,», vol. 81, 2007, p. 1274, 10.
dc.relation[14] S.P. Subadra, S. Yousef, P. Griskevicius, y V. Makarevicius, «High-performance fiberglass/epoxy reinforced by functionalized CNTs for vehicle applications with less fuel consumption and greenhouse gas emissions,», Polym. Test. 86 (2020).
dc.relation[15] A. Anjang, V. Chevali, E. Kandare, A. Mouritz, y S. Feih, «Tension modelling and testing of sandwich composites in fire,», Compos. Struct. 113 (2014) 437–445.
dc.relation[16] A. Mouritz, S. Feih, E. Kandare, Z. Mathys, A. Gibson, P. Des Jardin, S. Case, y B. Lattimer, Review of fire structural modelling of polymer composites, Composites Part A 40 (2009) 1800–1814.
dc.relation[17] M. Murillo, B. Tutikian, V. Ortolan, M. Oliveira, C. Sampaio, L. Gomez, ´ y L. Silva, «Fire resistance performance of concrete - PVC panels with polyvinyl chloride (PVC) stay in place (SIP) formwork,», J. Mater. Res. Technol. 8 (2019) 4094–4107.
dc.relation[18] S.A.o.S.a. Certification, UNE-EN 13381 -1 Test Methods for Determining the Resistance to Fire of Structural Elements Part 1: Horizontal Protective Membranes, Madrid, 2016.
dc.relation[19] Organizaç˜ ao Internacional de Normalizaç˜ ao, «Ensaios de resistˆencia ao fogo - Elementos de construç˜ ao de edifícios - Parte 1: Requisitos gerais (ISO 834-1),», 1991, p. 53.
dc.relation[20] EN 1991-1-2, «Eurocodigo ´ 1: Acçoes ˜ sobre estruturas - Parte 1-2: Acçoes ˜ gerais - Acçoes ˜ sobre estruturas expostas ao fogo,», 2002.
dc.relation[21] A. Gil, F. Pacheco, R. Christ, K. Bolina, H. Khayat, y B. Tutikian, Comparative study of concrete panel’s fire resistance, ACI Mater. J. 114 (5) (2017) 755–762.
dc.relation[22] F. Bolina, «Avaliaçao ˜ experimental da influˆencia dos requisitos de durabilidade na segurança contra incˆendios dos prototipos ´ de pilares de bet˜ ao armado pr´efabricados,», 2016.
dc.relation[23] M. Murillo, B. Tutikian, R. Christ, L. Silva, M. Maschen, L. Gomez, ´ y M. Oliveira, Analysis of the influence of thickness on fire reaction performance in polyisocyanurate core sandwich panels, J. Mater. Res. Technol. 9 (5) (2020) 9487–9497.
dc.relation[24] P. De Souza, V. Dias y, P. Rodrigues, «AVALIAÇAO ˜ COMPARATIVA da eficiˆencia t´ermica de núcleos ISOLANTES de telhas termoacústicas em edificaçoes ˜ naregiao ˜ de campo mour˜ao-pr,», Revista T´ecnico-Científica do CREA-PR (2020) 1–15.
dc.relation9
dc.relation1
dc.relation40
dc.rights© 2022 The Authors. Published by Elsevier Ltd.
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S2214157X22007870?utm_campaign=STMJ_AUTH_SERV_PUBLISHED&utm_medium=email&utm_acid=85680638&SIS_ID=&dgcid=STMJ_AUTH_SERV_PUBLISHED&CMX_ID=&utm_in=DM316201&utm_source=AC_
dc.subjectSandwich panels
dc.subjectFire resistance
dc.subjectPIR foam Core
dc.subjectFiberglass fabric
dc.subjectGypsum
dc.subjectPlaster plate
dc.subjectCeramic plate
dc.titleComparative experimental analysis of the fire resistance of sandwich panels with polyisocyanourate core reinforced with fiberglass fabric
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución