dc.relation | (NTC), N. T. C. INGENIERÍA CIVIL Y ARQUITECTURA. CEMENTO PÓRTLAND. ESPECIFICACIONES FÍSICAS Y MECÁNICAS. Colombia.
(UAESP), U. A. E. de S. P. (2012). Foro internacional Gestión integral de los RCD.
Ajdukiewicz, A., & Kliszczewicz, A. (2002). Influence of recycled aggregates on mechanical properties of HS/HPC. Cement and Concrete Composites, 24(2), 269-279.https://doi.org/10.1016/S0958-9465(01)00012-9
Alcaldía de Barranquilla. (2015). Plan de Gestión Integral de Residuos Sólidos – PGIRS. 2016 -2027, 178.
Ambiente, D. D. E. (s. f.). Guía para la elaboración del Plan de Gestión Integral de Residuos de Construcción y Demolición (RCD) en obra.
Angulo, S. C., Carrijo, P. M., Figueiredo, A. D., Chaves, A. P., & John, V. M. (2010). On the classification of mixed construction and demolition waste aggregate by porosity and its impact on the mechanical performance of concrete. Materials and Structures,43(4), 519-528. https://doi.org/10.1617/s11527-009-95089
Angulo, S. C., John, V. M., Ulsen, C., & Kahn, H. (2014). Caracterização de agregados de resíduos de construção e demolição reciclados separados por líquidos densos. I Conferência Latino-Americana De Construção Sustentável X Encontro Nacional De Tecnologia Do Ambiente Construído, (November 2014).
Argos. FICHA TÉCNICA CEMENTO USO ESTRUCTURAL (2017).
Arora, S., & Singh, S. P. (2017). Fatigue strength and failure probability of concrete made with RCA. Magazine of Concrete Research, 69(2), 55-67. https://doi.org/10.1680/jmacr.15.00353
Asociación Española de Normalización y Certificación (AENOR). Aridos para hormigón. (2009). España.
Association française de Normalisation. Granulats pour béton (2017). Francia.
ASTM International. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading) (2016)
Banjad Pečur, I., Štirmer, N., & Milovanović, B. (2015). Recycled aggregate concrete for nearly zero-energy buildings. Magazine of Concrete Research, 67(11), 575-584. https://doi.org/10.1680/macr.14.00220
Barritt, J. (2016). An overview on recycling and waste in construction. Proceedings of the Institution of Civil Engineers - Construction Materials, 169(2), 49-53. https://doi.org/10.1680/coma.15.00006
Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014a). Recycled aggregate from C&D waste & its use in concrete – A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68,501-516. https://doi.org/10.1016/j.conbuildmat.2014.07.003
Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014b). Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501-516. https://doi.org/10.1016/j.conbuildmat.2014.07.003
Bell, N. (2003). WASTE MINIMISATION AND RESOURCE RECOVERY. Environment Design Guide, 1-7. Recuperado a partir de http://www.jstor.org/stable/26148421
Bobadilla, R. (2012). ESTADO DEL ARTE DEL APROVECHAMIENTO DEL CONCRETO RECICLADO, 237.
Bran, A. (2016). Propuesta para el manejo integral de los residuos de la construcción y la demolición.
Bravo, M., De Brito, J., Pontes, J., & Evangelista, L. (2015). Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. Journal of Cleaner Production, 99, 59-74. https://doi.org/10.1016/j.jclepro.2015.03.012
Camacol Bogotá y Cundinamarca - Construcción Sostenible. (s. f.).
Cembureau. (2012). Activity report 2012. Recuperado a partir de http://www.cembureau.be/%0Aactivityreports
Cembureau. (2013). Activity report 2013. Recuperado a partir de
http://www.cembureau.be/%0Aactivityreports
Cembureau. (2014). Activity report 2014. Recuperado a partir de
http://www.cembureau.be/%0Aactivityreports
Cembureau. (2016). Activity Report 2016. Recuperado a partir de
http://www.cembureau.be/%0Aactivityreports
Chakradhara Rao, M., Bhattacharyya, S. K., & Barai, S. V. (2011a). Behaviour of recycled aggregate concrete under drop weight impact load. Construction and Building Materials, 25(1), 69-80. https://doi.org/10.1016/j.conbuildmat.2010.06.055
Chakradhara Rao, M., Bhattacharyya, S. K., & Barai, S. V. (2011b). Influence of field recycled coarse aggregate on properties of concrete. Materials and Structures,
44(1), 205-220. https://doi.org/10.1617/s11527-010-9620-x
Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on Life Cycle Assessment, Life Cycle
Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. Applied
Energy, 143, 395-413. https://doi.org/10.1016/j.apenergy.2015.01.023
Comisión asesora permanente para el regimen de construcciones sismo resistentes. (2010). El Reglamento Colombiano de Construcción Sismo Resistente (NSR-10), 530-827.
Committee ACI 211. (2002). Standard Practice for Selecting Proportions for Normal , Heavyweight , and Mass Concrete ( ACI 211 . 1-91 ).
Corinaldesi, V., & Moriconi, G. (2009). Behaviour of cementitious mortars containing different kinds of recycled aggregate. Construction and Building Materials, 23(1), 289-294. https://doi.org/10.1016/j.conbuildmat.2007.12.006
Corinaldesi, V., & Moriconi, G. (2010). Recycling of rubble from building demolition for lowshrinkage concretes. Waste Management, 30(4), 655-659. https://doi.org/10.1016/j.wasman.2009.11.026
Corinaldesi, V., & Moriconi, G. (2009). Behaviour of cementitious mortars containing differentkinds of recycled aggregate. Construction and Building Materials, 23(1), 289-294.
https://doi.org/10.1016/j.conbuildmat.2007.12.006
Corinaldesi, V., & Moriconi, G. (2010). Recycling of rubble from building demolition for lowshrinkage concretes. Waste Management, 30(4), 655-659.
https://doi.org/10.1016/j.wasman.2009.11.026
Costa, U., & Ursella, P. (2003). Construction and demolition waste recycling in Italy, WASCON 2003—Progress on the road to sustainability. San sebastian, España.
Courard, L., Michel, F., & Delhez, P. (2010). Use of concrete road recycled aggregates for Roller Compacted Concrete. Construction and Building Materials, 24(3), 390-395. https://doi.org/10.1016/j.conbuildmat.2009.08.040
de Brito, J., & Alves, F. (2010). Concrete with recycled aggregates: the Portuguese experimental research. Materials and Structures, 43(S1), 35-51. https://doi.org/10.1617/s11527-010-9595-7
de Brito, J., & Saikia, N. (2013). Recycled Aggregate in Concrete. London: Springer London.
https://doi.org/10.1007/978-1-4471-4540-0
DE GUZMAN SANCHEZ, D. (2001). Tecnología del concreto y del mortero. Cali.
de Santos, D., Monercillo, B., & García, A. (2011). Gestión de residuos en las obras de construcción y demolición (2.a ed., p. 26).
del Río Merino, M., Izquierdo Gracia, P., & Weis Azevedo, I. S. (2010). Sustainable construction: construction and demolition waste reconsidered. Waste Management & Research, 28(2), 118-129. https://doi.org/10.1177/0734242X09103841
Dias, N., & Carvalho, M. T. (s. f.). Recovery of Packaging Glass Refuse By Mechanical Biological Treatment Plant- Case Study, 2-12
Dimoudi, A., & Tompa, C. (2008). Energy and environmental indicators related to construction of office buildings. Resources, Conservation and Recycling, 53(1-2), 86-95.
https://doi.org/10.1016/j.resconrec.2008.09.008
Dr.S.R.Choudhari, A. N. D., & Dr.A.R.Gajbhiye. (2012). Performance Evaluation Of Recycled Aggregate Used In Concrete, 5.
EC Commision of the European communities. (2000). 532/200/CE Construction and demolition waste.
Eguchi, K., Teranishi, K., Nakagome, A., Kishimoto, H., Shinozaki, K., & Narikawa, M. (2007).
Application of recycled coarse aggregate by mixture to concrete construction. Construction and Building Materials, 21(7), 1542-1551. https://doi.org/10.1016/j.conbuildmat.2005.12.023
EPD. (2015). Monitoring of Solid Waste in Hong Kong 2014.
Escombros, M. D. E., La, E. N., Bogotá, C. D. E., La, E. N., & Bogotá, C. D. E. (2013). Disponible en: http://www.redalyc.org/articulo.oa?id=75029150005.
Etxeberria, M., Vázquez, E., Marí, A., & Barra, M. (2007). Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete.
Cement and Concrete Research, 37(5), 735-742. https://doi.org/10.1016/j.cemconres.2007.02.002
European Commission Environment. (2011). Construction and Demolition Waste management. Recuperado a partir de http://ec.europa.eu/environment/waste/studies/mixed_waste.htm
European Parliament and Council. (2008). Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives. Official Journal of the European Union, 3-30. https://doi.org/2008/98/EC.; 32008L0098
Eurostat (2011). (2011). Waste statistics, European commission. Recuperado 8 de diciembre de 2017, a partir de http://epp.eurostat.ec.europa.eu/statistics_%0Aexplained/index.php/Waste_statistics
Evangelista, L., & de Brito, J. (2007). Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 29(5), 397-401. https://doi.org/10.1016/j.cemconcomp.2006.12.004
FIGUEREDO, J. V., & PADILLA, E. P. (2017). OBTENCIÓN DE UNA MEZCLA DE CONCRETO CON RESIDUOS PLÁSTICOS DE EQUIPOS ELECTRÓNICOS PARA LA FABRICACIÓN DE ELEMENTOS NO ESTRUCTURALES, 0-171.
Fischer, C., Werge, M. (2009). EU as a recycling society: Present recycling levels of municipal waste and construction demolition waste in the EU. ETC. SCP. Copenhagen.
Franklin Associates, & Prairie Village, K. (1998). Characterization of building-related construction and demolition debris in the United States Report No. EPA530-R-98-010 prepared for The U.S. Environmental Protection Agency
Gartner, E. (2004). Industrially interesting approaches to «low-CO2» cements. Cement and Concrete Research, 34(9), 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021
Gómez-Soberón, J. M. . (2002). Porosity of recycled concrete with substitution of recycled concrete aggregate. Cement and Concrete Research, 32(8), 1301-1311. https://doi.org/10.1016/S0008-8846(02)00795-0
González-Fonteboa, B., & Martínez-Abella, F. (2008). Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties. Building and Environment, 43(4), 429-437. https://doi.org/10.1016/j.buildenv.2007.01.008
González-Fonteboa, B., Martínez-Abella, F., Eiras-López, J., & Seara-Paz, S. (2011). Effect of recycled coarse aggregate on damage of recycled concrete. Materials and Structures, 44(10), 1759-1771. https://doi.org/10.1617/s11527-011-9736-7
Gutierres, A. (2013). Hormigon Reciclado.
H.Kosmatka, S., & L.wilson, M. (2011). Design and Control of Concrete Mixtures. Construction. Recuperado a partir de http://www.cement.org/bookstore/supporting/cd100/EB001Frt.pdf
Halmeman, M. C. R., Souza, P. C. de, & Casarin, A. N. (2009). Caracterização dos resíduos de construção e demolição na unidade de recebimento de resíduos sólidos no município de Campo Mourão – PR. Revista Tecnológica, 203-209.
Ho, N. Y., Lee, Y. P. K., Lim, W. F., Chew, K. C., Low, G. L., & Ting, S. K. (2015). Evaluation of RCA concrete for the construction of Samwoh Eco-Green Building. Magazine of Concrete Research, 67(12), 633-644. https://doi.org/10.1680/macr.14.00212
Hook, W. R., Cole, L. W., Cost, V. T., Diulus, D. H., & Mullarky, J. I. (2001). Guide for Design and Construction of Concrete Parking Lots Reported by ACI Committee 330. Concrete, 92(Reapproved), 1-32.
Hooton, R., & Gómez-Soberón, J. (2003). Relationship Between Gas Adsorption and the Shrinkage and Creep of Recycled Aggregate Concrete. Cement, Concrete and Aggregates, 25(2), 11386. https://doi.org/10.1520/CCA10442J
HUANG, S., & ZHAO, X. (2009). Recycled aggregate. Sichuan Building Science (Vol. 1).
IMCYC. (s. f.). Instituto Colombiano de Normas Técnicas y Certificación ICONTEC. CEMENTO PORTLAND.
CLASIFICACIÓN Y NOMENCLATURA (2014).
Intergovernmental Panel on Climate change. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Repor. Recuperado a partir de http://www.cambridge.org/co/academic/subjects/earth-andenvironmental-science/climatology-and-climate-change/climate-change-2007-physicalscience-basis-working-group-i-contribution-fourth-assessment-reportipcc?format=PB&isbn=9780521705967#ZLO59QBvldKCbkO
Jo, B.-W., Park, S.-K., & Park, J.-C. (2008). Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates. Construction and Building Materials, 22(12), 2281-2291. https://doi.org/10.1016/j.conbuildmat.2007.10.009
Katz, A. (2003). Properties of concrete made with recycled aggregate from partially hydrated old
concrete. Cement and Concrete Research, 33(5), 703-711. https://doi.org/10.1016/S0008- 8846(02)01033-5
KAWANO, H. (2000). Outline of JIS/TR on recycled concrete using recycled aggregate. International Workshop on Recycled Aggregate (p. 43.48). Nigata, Japan.
Kia, A., Wong, H. S., & Cheeseman, C. R. (2017). Clogging in permeable concrete: A review. Journal of Environmental Management, 193, 221-233. https://doi.org/10.1016/j.jenvman.2017.02.018
KIER. (2008). Sustainable construction: simple ways to make it happen. IHS BRE Press.
Kisku, N., Joshi, H., Ansari, M., Panda, S. K., Nayak, S., & Dutta, S. C. (2017). A critical review and assessment for usage of recycled aggregate as sustainable construction material. Construction and Building Materials, 131, 721-740. https://doi.org/10.1016/j.conbuildmat.2016.11.029
Letelier, V., Tarela, E., Osses, R., Cárdenas, J. P., & Moriconi, G. (2016). Mechanical Properties of Concrete With Recycled Aggregates and Waste Glass. Structural Concrete, (1), 4-10. https://doi.org/10.1002/suco.201500143
Levy, S. M., & Helene, P. (2004). Durability of recycled aggregates concrete: A safe way to sustainable development. Cement and Concrete Research, 34(11), 1975-1980.
https://doi.org/10.1016/j.cemconres.2004.02.009
Li, J., Xiao, H., & Zhou, Y. (2009). Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete. Construction and Building Materials, 23(3), 1287-1291. https://doi.org/10.1016/j.conbuildmat.2008.07.019
LIMA, A. S., & CABRAL, A. E. B. (2013). Caracterização e classificação dos resíduos de construção civil da cidade de Fortaleza ( CE ). Engenharia Sanitária e Ambiental, 18(2), 169-176. https://doi.org/10.1590/S1413-41522013000200009
Limbachiya, M. C. (2010). Recycled aggregates: Production, properties and value-added sustainable applications. Journal of Wuhan University of Technology-Mater. Sci. Ed., 25(6), 1011-1016. https://doi.org/10.1007/s11595-010-0140-x
Limbachiya, M. C., Marrocchino, E., & Koulouris, A. (2007). Chemical-mineralogical characterisation of coarse recycled concrete aggregate. Waste Management.
https://doi.org/10.1016/j.wasman.2006.01.005
Limbachiya, M., Koulouris, A., Roberts, J., & Fried, A. (2004). Properties of recycled aggregate concrete. En RILEM international symposium on environment-conscious materials and systems for sustainable development (p. 136).
Lovato, P. S., Possan, E., Molin, D. C. C. D., Masuero, Â. B., & Ribeiro, J. L. D. (2012). Modeling of mechanical properties and durability of recycled aggregate concretes. Construction and Building Materials, 26(1), 437-447. https://doi.org/10.1016/j.conbuildmat.2011.06.043
Lye, C.-Q., Dhir, R. K., & Ghataora, G. S. (2016). Shrinkage of recycled aggregate concrete. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 169(12), 867- 891. https://doi.org/10.1680/jstbu.15.00138
Marie, I., & Quiasrawi, H. (2012). Closed-loop recycling of recycled concrete aggregates. Journal of Cleaner Production, 37, 243-248. https://doi.org/10.1016/j.jclepro.2012.07.020
Marinković, S., Radonjanin, V., Malešev, M., & Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, 30(11), 2255-2264. https://doi.org/10.1016/j.wasman.2010.04.012
McGinnis, M. J., Davis, M., de la Rosa, A., Weldon, B. D., & Kurama, Y. C. (2017). Quantified sustainability of recycled concrete aggregates. Magazine of Concrete Research, 69(23), 1203-1211. https://doi.org/10.1680/jmacr.16.00338
McNeil, K., & Kang, T. H.-K. (2013). Recycled Concrete Aggregates: A Review. International Journal of Concrete Structures and Materials, 7(1), 61-69. https://doi.org/10.1007/s40069- 013-0032-5
Mena, C., & Valdés, Y. (2014). Dosificación óptima de una mezcla de concreto con materiales reciclados procedentes de residuos de construcción y demolición (RCD) de la ciudad de Cali para uso en obras viales de bajo tránsito.
Ministerio de Ambiente y Desarrollo Sostenible. Resolución No 0472 del 28 de Febrero del 2017
(2017). Colombia.
Nixon, P. J. (1978). Recycled concrete as an aggregate for concrete—a review. Matériaux et Constructions, 11(5), 371-378. https://doi.org/10.1007/BF02473878
O. Rageh, M., Hosny, H., & Abdel-Rehem, A. (2017). Sustainability Requirements of Concrete Structures. American Journal of Civil Engineering and Architecture, 5(5), 174-186. https://doi.org/10.12691/ajcea-5-5-1
Oikonomou, N. D. (2005). Recycled concrete aggregates. Cement and Concrete Composites, 27(2), 315-318. https://doi.org/10.1016/j.cemconcomp.2004.02.020
Pacheco Bustos, C. A., Fuentes Pumarejo, L. G., Sánchez Cotte, É. H., & Rondón Quintana, H. A. (2017). Construction demolition waste (CDW), a perspective of achievement for the city of Barranquilla since its management model. Ingeniería y Desarrollo, 35(2), 533-555.
Pataki, D. E., Emmi, P. C., Forster, C. B., Mills, J. I., Pardyjak, E. R., Peterson, T. R., … Dudley-Murphy, E. (2009). An integrated approach to improving fossil fuel emissions scenarios with urban ecosystem studies. Ecological Complexity, 6(1), 1-14. https://doi.org/10.1016/j.ecocom.2008.09.003
Pavón, E., Etxeberria, M., & Díaz, N. E. (2012). Estudio de la aplicabilidad del hormigón con árido grueso reciclado en La Habana, Cuba. Materiales de Construcción, 62(307), 431-441.
https://doi.org/10.3989/mc.2012.63210
https://doi.org/10.14482/inde.35.2.10174
Peng, C. (2016). Calculation of a building’s life cycle carbon emissions based on Ecotect and building information modeling. Journal of Cleaner Production, 112, 453-465.
https://doi.org/10.1016/j.jclepro.2015.08.078
Pereira, L. (2002). Construction and demolition waste recycling: the case of the Portuguese northern region (in Portuguese). Minho University.
Poon, C. ., Shui, Z. ., & Lam, L. (2004). Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction and Building Materials, 18(6), 461-468. https://doi.org/10.1016/j.conbuildmat.2004.03.005
Poon, C. S. (2007). Reducing construction waste. Waste Management, 27(12), 1715-1716.
https://doi.org/10.1016/j.wasman.2007.08.013
Poon, C. S., Kou, S. C., & Lam, L. (2007). Influence of recycled aggregate on slump and
bleeding of fresh concrete. Materials and Structures, 40(9), 981-988.
https://doi.org/10.1617/s11527-006-9192-y
Porrero, J., Ramos, C., Grases, J., & Velazco, G. J. (2014). MANUAL DEL CONCRETO ESTRUCURAL. Venezuela.
Quiroz, M., & Salamanca, L. (2006). APOYO DIDÁCTICO PARA LA ENSEÑANZA Y APRENDIZAJE EN LA ASIGNATURA DE «TECNOLOGÍA DEL HORMIGÓN». UNIVERSIDAD MAYOR DE SAN SIMÓN.
Rahal, K. (2007). Mechanical properties of concrete with recycled coarse aggregate. Building and Environment, 42(1), 407-415. https://doi.org/10.1016/j.buildenv.2005.07.033
Rakshvir, M., & Barai, S. V. (2006). Studies on recycled aggregates-based concrete. Waste Management & Research, 24(3), 225-233. https://doi.org/10.1177/0734242X06064820
Reixach, F., Cuscó, A., & Barroso, J. (2000). Situatión actual y perspectives de futuro de los resíduos de la construcción. Cataluña, España.
Romero, E. (2006). Residuos de Construcción y Demolición. España. Recuperado a partir
http://www.uhu.es/emilio.romero/docencia/Residuos Construccion.pdf
Rosas Chaves, J. A. (2014). Mobiliario urbano prefabricado en concreto con agregado grueso
reciclado. Recuperado a partir de http://www.bdigital.unal.edu.co/47108/1/396288.2014COMPLETA.pdf
Sabău, M., Pop, I., & Oneţ, T. (2016). Experimental study on local bond stress-slip relationship in self-compacting concrete. Materials and Structures, 49(9), 3693-3711. https://doi.org/10.1617/s11527-015-0749-5
Sadrmomtazi, A., Dolati-Milehsara, S., Lotfi-Omran, O., & Sadeghi-Nik, A. (2016). The combined effects of waste Polyethylene Terephthalate (PET) particles and pozzolanic materials on the properties of self-compacting concrete. Journal of Cleaner Production, 112, 2363-2373. https://doi.org/10.1016/j.jclepro.2015.09.107
Sanchez de guzman, D. (1996). TECNOLOGÍA DEL COONCRETO Y DEL MORTERO (3.a ed.). Bogotá.
Sandler, K., & Swingle, P. (2006). OSWER Innovations Pilot: Building Deconstruction and Reuse. Recuperado a partir de http://www.epa.gov/oswer/
Secretaría Distrital de Ambiente. (2012). Resolución 01115 de 2012: "Por medio de la cual se adoptan los lineamientos Técnico - Ambientales para las actividades de aprovechamiento y tratamiento de los residuos de construcción y demolición en el Distrito Capital."\tRegistro Distrital 4977 de octubre 1 de 2012., 1-19.
Senthil Kumar, K., & Baskar, K. (2014). Response Surfaces for Fresh and Hardened Properties of Concrete with E-Waste (HIPS). Journal of Waste Management, 2014, 1-14. https://doi.org/10.1155/2014/517219
Shen, L. Y., Tam, V. W. Y., Tam, C. M., & Drew, D. (2004). Mapping Approach for Examining Waste Management on Construction Sites, 130(August), 472-481. https://doi.org/10.1061/(ASCE)0733-9364(2004)130:4(472)
Shi, C., Li, Y., Zhang, J., Li, W., Chong, L., & Xie, Z. (2016). Performance enhancement of recycled concrete aggregate – A review. Journal of Cleaner Production, 112, 466-472. https://doi.org/10.1016/j.jclepro.2015.08.057
Silva, R. V., de Brito, J., & Dhir, R. K. (2014). Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials, 65, 201-217. https://doi.org/10.1016/j.conbuildmat.2014.04.117
Silva, R. V., de Brito, J., & Dhir, R. K. (2015). The influence of the use of recycled aggregates on the compressive strength of concrete: a review. European Journal of Environmental and Civil Engineering, 19(7), 825-849. https://doi.org/10.1080/19648189.2014.974831
Silva, R. V., de Brito, J., & Dhir, R. K. (2017). Availability and processing of recycled aggregates within the construction and demolition supply chain: A review. Journal of Cleaner Production, 143, 598-614. https://doi.org/10.1016/j.jclepro.2016.12.070
Silva, R. V., De Brito, J., & Dhir, R. K. (2014). Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials, 65, 201-217. https://doi.org/10.1016/j.conbuildmat.2014.04.117
Specifications for concrete with recycled aggregates. (1994). Materials and Structures, 27(9), 557-559. https://doi.org/10.1007/BF02473217
Suocheng, D., Tong, K. W., & Yuping, W. (2001). Municipal solid waste management in China: using commercial management to solve a growing problem. Utilities Policy, 10(1), 7-11.
https://doi.org/10.1016/S0957-1787(02)00011-5
Surya, M., VVL, K. R., & Lakshmy, P. (2013). Recycled Aggregate Concrete for Transportation Infrastructure. Procedia - Social and Behavioral Sciences, 104, 1158-1167.
https://doi.org/10.1016/j.sbspro.2013.11.212
Susunaga Monroy, J. M. (2013). Construcción Sostenible, Una Alternativa Para La Edificación De Viviendas De Interes Social Y Prioritario. Journal of Chemical Information and Modeling, 53(9), 1689-1699. https://doi.org/10.1017/CBO9781107415324.004
The Netherlands Standardization Institute (NEN). Aggegates for concrete (2005). Holanda.
Topçu, İ. B., & Şengel, S. (2004). Properties of concretes produced with waste concrete aggregate. Cement and Concrete Research, 34(8), 1307-1312. https://doi.org/10.1016/j.cemconres.2003.12.019
Tu, T.-Y., Chen, Y.-Y., & Hwang, C.-L. (2006). Properties of HPC with recycled aggregates. Cement and Concrete Research, 36(5), 943-950. https://doi.org/10.1016/j.cemconres.2005.11.022
United Nations Conference on Environment and Development (UNCED). (1992). Agenda 21, the Rio Declaration on Environment and Development, the Statement of Forest Principles, the United Nations Framework Convention on Climate Change and the United Nations Convention on Biological Diversity. Rio de Janeiro
United Nations Environment Programme. (2009). Common carbon metric for measuring energy use and reporting greenhouse gas emissions from building operations.
United Nations Environment Programme (UNEP). (2009). Building andClimateChange: Summary for Decision-Makers, SustainableBuildings & Climate Initiative.
Universidad de san simon. (2006). Libro básico sobre tecnología del concreto.
Ürge-Vorsatz, D., & Novikova, A. (2008). Potentials and costs of carbon dioxide mitigation in the world’s buildings. Energy Policy, 36(2), 642-661. https://doi.org/10.1016/j.enpol.2007.10.009
US Departament of Transportation. (2004). Transportation Applications Of Recycled Concrete Aggregate - State of the ractice National Review September 2004. Recuperado a partir de
https://www.fhwa.dot.gov/pavement/recycling/applications.pdf
Vadera, S., Woolas, P., Flint, C., Pearson, I., Hodge, M., Jordan, W., & Davies, M. (2008). Strategy for sustainable construction. Materials Science, (June), 64. https://doi.org/8731/2k/6/08/NP URN 08/973
Wang, J., Kang, X., & Tam, V. W. (2008). An investigation of construction wastes: an empirical study in Shenzhen. Journal of Engineering, Design and Technology, 6(3), 227-236. https://doi.org/10.1108/17260530810918252
Waste, S., & Response, E. (2000). OSWER Innovation Project Success Story:, 1-4.
World Construction Aggregates - Industry Market Research, Market Share, Market Size, Sales, Demand Forecast, Market Leaders, Company Profiles, Industry Tre. (s. f.).
Xiao, J., Li, J., & Zhang, C. (2005). Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research, 35(6), 1187-1194.
https://doi.org/10.1016/j.cemconres.2004.09.020
Xiao, J., & Zhang, G. (s. f.). Research and Modification on Recycled Aggregates, (1), 2-9. Yanik, K. (s. f.). Report: Global demand for aggregates to rise. Recuperado 6 de diciembre de 2017, a partir de http://www.pitandquarry.com/report-global-demand-for-aggregates-to-rise/
Youcai, Z., & Sheng, H. (2017). General Introduction of Construction and Demolition Waste. En Pollution Control and Resource Recovery (pp. 1-14). Elsevier.
154
https://doi.org/10.1016/B978-0-12-811754-5.00001-4
Zaharieva, R., Buyle-Bodin, F., Skoczylas, F., & Wirquin, E. (2003). Assessment of the surface permeation properties of recycled aggregate concrete. Cement and Concrete Composites, 25(2), 223-232. https://doi.org/10.1016/S0958-9465(02)00010-0 | |