dc.creatorZhang, Yu-Hang
dc.creatorGuo, Wei
dc.creatorTao, Zeng
dc.creatorShiQi, Zhang
dc.creatorChen, Lei
dc.creatorGamarra, Margarita
dc.creatorMansour, Romany F.
dc.creatorEscorcia-Gutierrez, Jose
dc.creatorHuang, Tao
dc.creatorYu Dong, Cai
dc.date2021-08-19T15:34:31Z
dc.date2021-08-19T15:34:31Z
dc.date2021-07-09
dc.date.accessioned2023-10-03T19:50:41Z
dc.date.available2023-10-03T19:50:41Z
dc.identifier1664-302X
dc.identifierhttps://hdl.handle.net/11323/8555
dc.identifier10.3389/fmicb.2021.711244
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172576
dc.descriptionType 2 diabetes (T2D) is a systematic chronic metabolic condition with abnormal sugar metabolism dysfunction, and its complications are the most harmful to human beings and may be life-threatening after long-term durations. Considering the high incidence and severity at late stage, researchers have been focusing on the identification of specific biomarkers and potential drug targets for T2D at the genomic, epigenomic, and transcriptomic levels. Microbes participate in the pathogenesis of multiple metabolic diseases including diabetes. However, the related studies are still non-systematic and lack the functional exploration on identified microbes. To fill this gap between gut microbiome and diabetes study, we first introduced eggNOG database and KEGG ORTHOLOGY (KO) database for orthologous (protein/gene) annotation of microbiota. Two datasets with these annotations were employed, which were analyzed by multiple machine-learning models for identifying significant microbiota biomarkers of T2D. The powerful feature selection method, Max-Relevance and Min-Redundancy (mRMR), was first applied to the datasets, resulting in a feature list for each dataset. Then, the list was fed into the incremental feature selection (IFS), incorporating support vector machine (SVM) as the classification algorithm, to extract essential annotations and build efficient classifiers. This study not only revealed potential pathological factors for diabetes at the microbiome level but also provided us new candidates for drug development against diabetes.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.relationArthur, R., Rohrmann, S., Møller, H., Selvin, E., Dobs, A. S., Kanarek, N., et al. (2017). Pre-diabetes and serum sex steroid hormones among US men. Andrology 5, 49–57. doi: 10.1111/andr.12287
dc.relationBakris, G. L., Agarwal, R., Anker, S. D., Pitt, B., Ruilope, L. M., Rossing, P., et al. (2020). Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N. Engl. J. Med. 383, 2219–2229. doi: 10.1056/nejmoa2025845
dc.relationBeli, E., Prabakaran, S., Krishnan, P., Evans-Molina, C., and Grant, M. B. (2019). Loss of diurnal oscillatory rhythms in gut microbiota correlates with changes in circulating metabolites in type 2 diabetic db/db mice. Nutrients 11:2310. doi: 10.3390/nu11102310
dc.relationBullard, K. M., Cowie, C. C., Lessem, S. E., Saydah, S. H., Menke, A., Geiss, L. S., et al. (2018). Prevalence of diagnosed diabetes in adults by diabetes type—United States, 2016. Morb. Mortal. Wkly. Rep. 67:359. doi: 10.15585/mmwr.mm6712a2
dc.relationCarrillo-Larco, R. M., Altez-Fernandez, C., Acevedo-Rodriguez, J. G., Ortiz-Acha, K., and Ugarte-Gil, C. (2019). Leptospirosis as a risk factor for chronic kidney disease: a systematic review of observational studies. PLoS Neglect. Trop. Dis. 13:e0007458. doi: 10.1371/journal.pntd.0007458
dc.relationChatterjee, S., Khunti, K., and Davies, M. J. (2017). Type 2 diabetes. Lancet 389, 2239–2251.
dc.relationChen, L., Wang, S., Zhang, Y.-H., Li, J., Xing, Z.-H., Yang, J., et al. (2017). Identify key sequence features to improve CRISPR sgRNA efficacy. IEEE Access 5, 26582–26590. doi: 10.1109/access.2017.2775703
dc.relationChen, L., Zeng, T., Pan, X., Zhang, Y. H., Huang, T., and Cai, Y. D. (2019). Identifying methylation pattern and genes associated with breast cancer subtypes. Int. J. Mol. Sci. 20:4269. doi: 10.3390/ijms20174269
dc.relationCortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20, 273–297.
dc.relationDeputy, N. P., Kim, S. Y., Conrey, E. J., and Bullard, K. M. (2018). Prevalence and changes in preexisting diabetes and gestational diabetes among women who had a live birth—United States, 2012–2016. Morb. Mortal. Wkly. Rep. 67:1201. doi: 10.15585/mmwr.mm6743a2
dc.relationFarnsworth, C. W., Shehatou, C. T., Maynard, R., Nishitani, K., Kates, S. L., Zuscik, M. J., et al. (2015). A humoral immune defect distinguishes the response to Staphylococcus aureus infections in mice with obesity and type 2 diabetes from that in mice with type 1 diabetes. Infect. Immun. 83, 2264–2274. doi: 10.1128/iai.03074-14
dc.relationFischer, E., Günter, K., and Braun, V. (1989). Involvement of ExbB and TonB in transport across the outer membrane of Escherichia coli: phenotypic complementation of exb mutants by overexpressed tonB and physical stabilization of TonB by ExbB. J. Bacteriol. 171, 5127–5134. doi: 10.1128/jb.171.9.5127-5134.1989
dc.relationForslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., et al. (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266.
dc.relationGan, Y.-H. (2013). Host susceptibility factors to bacterial infections in type 2 diabetes. PLoS Pathog. 9:e1003794. doi: 10.1371/journal.ppat.1003794
dc.relationGherasim, C., Lofgren, M., and Banerjee, R. (2013). Navigating the B12 road: assimilation, delivery, and disorders of cobalamin. J. Biol. Chem. 288, 13186–13193. doi: 10.1074/jbc.r113.458810
dc.relationGoldstein, B. J. (2002). Insulin resistance as the core defect in type 2 diabetes mellitus. Am. J. Cardiol. 90, 3–10. doi: 10.1016/s0002-9149(02)02553-5
dc.relationGórski, A., Międzybrodzki, R., Weber-Da̧browska, B., Fortuna, W., Letkiewicz, S., Rogóż, P., et al. (2016). Phage therapy: combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front. Microbiol. 7:1515. doi: 10.3389/fmicb.2016.01515
dc.relationGurung, M., Li, Z., You, H., Rodrigues, R., Jump, D. B., Morgun, A., et al. (2020). Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 51:102590. doi: 10.1016/j.ebiom.2019.11.051
dc.relationHe, S., Guo, F., Zou, Q., and Ding, H. (2020). MRMD2.0: a python tool for machine learning with feature ranking and reduction. Curr. Bioinform. 15, 1213–1221. doi: 10.2174/1574893615999200503030350
dc.relationJia, Y., Zhao, R., and Chen, L. (2020). Similarity-based machine learning model for predicting the metabolic pathways of compounds. IEEE Access 8, 130687–130696. doi: 10.1109/access.2020.3009439
dc.relationKahn, S. E., Hull, R. L., and Utzschneider, K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846. doi: 10.1038/nature05482
dc.relationKibirige, D., and Mwebaze, R. (2013). Vitamin B12 deficiency among patients with diabetes mellitus: is routine screening and supplementation justified? J. Diabetes Metab. Disord. 12:17.
dc.relationKodera, T., Smirnov, S. V., Samsonova, N. N., Kozlov, Y. I., Koyama, R., Hibi, M., et al. (2009). A novel L-isoleucine hydroxylating enzyme, L-isoleucine dioxygenase from Bacillus thuringiensis, produces (2S, 3R, 4S)-4-hydroxyisoleucine. Biochem. Biophys. Res. Commun. 390, 506–510. doi: 10.1016/j.bbrc.2009.09.126
dc.relationKohavi, R. (1995). “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in Proceedings of the International joint Conference on Artificial Intelligence, (London: Lawrence Erlbaum Associates Ltd), 1137–1145.
dc.relationLai, Y.-R., Chiu, W.-C., Huang, C.-C., Tsai, N.-W., Wang, H.-C., Lin, W.-C., et al. (2019). HbA1C variability is strongly associated with the severity of peripheral neuropathy in patients with type 2 diabetes. Front. Neurosci. 13:90. doi: 10.3389/fnins.2019.00090
dc.relationLi, T., Xu, X., Xu, Y., Jin, P., Chen, J., Shi, Y., et al. (2019). PPARG polymorphisms are associated with unexplained mild vision loss in patients with type 2 diabetes mellitus. J. Ophthalmol. 2019:5284867.
dc.relationLiang, H., Chen, L., Zhao, X., and Zhang, X. (2020). Prediction of drug side effects with a refined negative sample selection strategy. Comput. Math. Methods Med. 2020:1573543.
dc.relationLiu, C., Feng, X., Li, Q., Wang, Y., Li, Q., and Hua, M. (2016). Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: a systematic review and meta-analysis. Cytokine 86, 100–109. doi: 10.1016/j.cyto.2016.06.028
dc.relationLiu, H., Hu, B., Chen, L., and Lu, L. (2021). Identifying protein subcellular location with embedding features learned from networks. Curr. Proteom. [Epub ahead of print].
dc.relationLiu, H. A., and Setiono, R. (1998). Incremental feature selection. Appl. Intellig. 9, 217–230.
dc.relationMa, Y., You, X., Mai, G., Tokuyasu, T., and Liu, C. (2018). A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome 6:24.
dc.relationMaes, M., Kubera, M., Leunis, J. C., Berk, M., Geffard, M., and Bosmans, E. (2013). In depression, bacterial translocation may drive inflammatory responses, oxidative and nitrosative stress (O&NS), and autoimmune responses directed against O&NS-damaged neoepitopes. Acta Psychiatr. Scand. 127, 344–354. doi: 10.1111/j.1600-0447.2012.01908.x
dc.relationMao, X., Cai, T., Olyarchuk, J. G., and Wei, L. (2005). Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21, 3787–3793. doi: 10.1093/bioinformatics/bti430
dc.relationMatthews, B. (1975). Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta Protein Struct. 405, 442–451. doi: 10.1016/0005-2795(75)90109-9
dc.relationPan, X., Li, H., Zeng, T., Li, Z., Chen, L., Huang, T., et al. (2021). Identification of protein subcellular localization with network and functional embeddings. Front. Genet. 11:626500. doi: 10.3389/fgene.2020.626500
dc.relationPeng, H., Long, F., and Ding, C. (2005). Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intellig. 27, 1226–1238. doi: 10.1109/tpami.2005.159
dc.relationJ. Platt (ed.) (1998a). Fast Training of Support Vector Machines Using Sequential Minimal Optimization. Cambridge, MA: MIT Press.
dc.relationPlatt, J. (1998b). Sequential Minimal Optimizaton: A Fast Algorithm for Training Support Vector Machines. Technical Report MSR-TR-98–14. Redmond: Microsoft Corporation.
dc.relationPowell, S., Forslund, K., Szklarczyk, D., Trachana, K., Roth, A., Huerta-Cepas, J., et al. (2014). eggNOG v4. 0: nested orthology inference across 3686 organisms. Nucleic Acids Res. 42, D231–D239.
dc.relationSanahuja, J., Alonso, N., Diez, J., Ortega, E., Rubinat, E., Traveset, A., et al. (2016). Increased burden of cerebral small vessel disease in patients with type 2 diabetes and retinopathy. Diabetes Care 39, 1614–1620. doi: 10.2337/dc15-2671
dc.relationSchlienger, J.-L. (2013). Type 2 diabetes complications. Presse Med. 42, 839–848.
dc.relationSuzuki, Y., Nishijima, S., Furuta, Y., Yoshimura, J., Suda, W., Oshima, K., et al. (2019). Long-read metagenomic exploration of extrachromosomal mobile genetic elements in the human gut. Microbiome 7:119.
dc.relationTahir, M., and Idris, A. (2020). MD-LBP: an efficient computational model for protein subcellular localization from hela cell lines using SVM. Curr. Bioinform. 15, 204–211. doi: 10.2174/1574893614666190723120716
dc.relationTanaka, A., Shima, K., Fukuda, M., Tahara, Y., Yamamoto, Y., and Kumahara, Y. (1989). Tubular dysfunction in the early stage of diabetic nephropathy. Med. J. Osaka Univ. 38, 57–63.
dc.relationTeh, S.-H., You, R.-I., Yang, Y.-C., Hsu, C. Y., and Pang, C.-Y. (2020). A cohort study: the association between autoimmune disorders and leptospirosis. Sci. Rep. 10:3276.
dc.relationTomaszewski, J. E., Brooks, J. S. J., Hicks, D., and Livolsi, V. A. (1992). Diabetic mastopathy: a distinctive clinicopathologic entity. Hum. Pathol. 23, 780–786. doi: 10.1016/0046-8177(92)90348-7
dc.relationVergès, B., Rouland, A., Baillot-Rudoni, S., Brindisi, M. C., Duvillard, L., Simoneau, I., et al. (2021). Increased body fat mass reduces the association between fructosamine and glycated hemoglobin in obese type 2 diabetes patients. J. Diabetes Investig. 12, 619–624. doi: 10.1111/jdi.13383
dc.relationWang, X., Xu, X., and Xia, Y. (2017). Further analysis reveals new gut microbiome markers of type 2 diabetes mellitus. Antonie Van Leeuwenhoek 110, 445–453. doi: 10.1007/s10482-016-0805-3
dc.relationWitten, I. H., and Frank, E. (eds) (2005). Data Mining:Practical Machine Learning Tools and Techniques. San Francisco: Kaufmann.
dc.relationWu, H., Esteve, E., Tremaroli, V., Khan, M. T., Caesar, R., Mannerås-Holm, L., et al. (2017). Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23:850. doi: 10.1038/nm.4345
dc.relationYan, A., Issar, T., Tummanapalli, S., Markoulli, M., Kwai, N., Poynten, A., et al. (2020). Relationship between corneal confocal microscopy and markers of peripheral nerve structure and function in Type 2 diabetes. Diabet. Med. 37, 326–334. doi: 10.1111/dme.13952
dc.relationZafar, M. I., and Gao, F. (2016). 4-hydroxyisoleucine: a potential new treatment for type 2 diabetes mellitus. BioDrugs 30, 255–262. doi: 10.1007/s40259-016-0177-2
dc.relationZhang, F., Wang, M., Yang, J., Xu, Q., Liang, C., Chen, B., et al. (2019). Response of gut microbiota in type 2 diabetes to hypoglycemic agents. Endocrine 66, 485–493. doi: 10.1007/s12020-019-02041-5
dc.relationZhang, S., Pan, X., Zeng, T., Guo, W., Gan, Z., Zhang, Y. H., et al. (2019). Copy number variation pattern for discriminating MACROD2 states of colorectal cancer subtypes. Front. Bioeng. Biotechnol. 7:407. doi: 10.3389/fbioe.2019.00407
dc.relationZhang, S., Zeng, T., Hu, B., Zhang, Y. H., Feng, K., Chen, L., et al. (2020). Discriminating origin tissues of tumor cell lines by methylation signatures and Dys-methylated rules. Front. Bioeng. Biotechnol. 8:507. doi: 10.3389/fbioe.2020.00507
dc.relationZhang, Y. H., Li, H., Zeng, T., Chen, L., Li, Z., Huang, T., et al. (2021a). Identifying transcriptomic signatures and rules for SARS-CoV-2 infection. Front. Cell Dev. Biol. 8:627302. doi: 10.3389/fcell.2020.627302
dc.relationZhang, Y.-H., Zeng, T., Chen, L., Huang, T., and Cai, Y.-D. (2021b). Detecting the multiomics signatures of factor-specific inflammatory effects on airway smooth muscles. Front. Genet. 11:599970. doi: 10.3389/fgene.2020.599970
dc.relationZhang, Y.-H., Zeng, T., Chen, L., Huang, T., and Cai, Y.-D. (2021c). Determining protein–protein functional associations by functional rules based on gene ontology and KEGG pathway. Biochim. Biophys. Acta Proteins Proteom. 1869:140621. doi: 10.1016/j.bbapap.2021.140621
dc.relationZhao, X., Chen, L., and Lu, J. (2018). A similarity-based method for prediction of drug side effects with heterogeneous information. Math. Biosci. 306, 136–144. doi: 10.1016/j.mbs.2018.09.010
dc.relationZheng, Y., Ley, S. H., and Hu, F. B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 14:88. doi: 10.1038/nrendo.2017.151
dc.relationZhou, J.-P., Chen, L., Wang, T., and Liu, M. (2020). iATC-FRAKEL: a simple multi-label web-server for recognizing anatomical therapeutic chemical classes of drugs with their fingerprints only. Bioinformatics 36, 3568–3569. doi: 10.1093/bioinformatics/btaa166
dc.relationZhu, Y., Hu, B., Chen, L., and Dai, Q. (2021). iMPTCE-Hnetwork: a multi-label classifier for identifying metabolic pathway types of chemicals and enzymes with a heterogeneous network. Comput. Math. Methods Med. 2021:66 83051.
dc.relationZou, Q., Qu, K., Luo, Y., Yin, D., Ju, Y., and Tang, H. (2018). Predicting diabetes mellitus with machine learning techniques. Front. Genet. 9:515. doi: 10.3389/fgene.2018.00515
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceFRONTIERS IN MICROBIOLOGY
dc.sourcehttps://www.frontiersin.org/articles/10.3389/fmicb.2021.711244/full
dc.subjecttype 2 diabetes
dc.subjectgut microbiome
dc.subjectmachine learning
dc.subjectfeature selection
dc.subjectsupport vector machine
dc.subjectmicrobiota biomarkers
dc.titleIdentification of microbiota biomarkers with orthologous gene annotation for type 2 diabetes
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución