dc.creatorJiménez Moreno, Robinson
dc.creatorRodríguez Alemán, Jorge
dc.date2019-02-15T23:34:15Z
dc.date2019-02-15T23:34:15Z
dc.date2015-09-28
dc.date.accessioned2023-10-03T19:50:17Z
dc.date.available2023-10-03T19:50:17Z
dc.identifierJimenez Moreno, R., & Rodriguez Aleman, J. (2015). Control de móvil robótico mediante interfaz cerebro computador. INGE CUC, 11(2), 74-83. https://doi.org/10.17981/ingecuc.11.2.2015.08
dc.identifier0122-6517, 2382-4700 electrónico
dc.identifierhttp://hdl.handle.net/11323/2564
dc.identifierhttps://doi.org/10.17981/ingecuc.11.2.2015.08
dc.identifier10.17981/ingecuc.11.2.2015.08
dc.identifier2382-4700
dc.identifierCorporación Universidad de la Costa
dc.identifier0122-6517
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172508
dc.descriptionThis paper poses a control interface to com-mand the movement of a mobile robot according to sig-nals captured from the user’s brain. These signals are acquired and interpreted by Emotiv EPOC device, a 14-electrode type sensor which captures electroenceph-alographic (EEG) signals with high resolution, which, in turn, are sent to a computer for processing. One brain-computer interface (BCI) was developed based on the Emotiv software and SDK in order to command the mobile robot from a distance. Functionality tests are performed with the sensor to discriminate shift inten-tions of a user group, as well as with a fuzzy controller to hold the direction in case of concentration loss. As con-clusion, it was possible to obtain an efficient system for robot movements
dc.descriptionEn este artículo se presenta una interfaz de control que permite comandar el movimiento de un robot móvil en función de la captura de señales provenientes del cerebro del usuario. Dichas señales son adquiridas e in-terpretadas por medio del dispositivo Emotiv Epoc, el cual cuenta con 14 sensores tipo electrodo que captan señales electroencefalográficas (EEG) de alta resolución, que des-pués son enviadas a un equipo de cómputo para ser pro-cesadas. Se desarrolla una interfaz cerebro-computador (BCI) basada en el software y SDK del desarrollador del Emotiv mediante la cual se comanda de forma remota el robot móvil. Se realizan pruebas de funcionalidad con el sensor para discriminar una intención de desplazamiento por parte de un grupo de usuarios y un controlador difuso para sostener la dirección en casos de perdida de la con-centración. Como conclusión, se logra obtener un sistema eficiente para la manipulación del robot
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relationINGE CUC; Vol. 11, Núm. 2 (2015)
dc.relationINGE CUC
dc.relationINGE CUC
dc.relation[1] B. He, S. Gao, H. Yuan, and J. R. Wolpaw, “Brain–Computer Interfaces,” in Neural Engineering, 2nd ed., New York: Springer, 2013, pp. 87–151.DOI: 10.1007/978-1-4614-5227-0_2
dc.relation[2] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, “A review of classification algorithms for EEG-based brain-computer interfaces.,” J. Neural Eng., vol. 4, no. 2, pp. R1–R13, Jun. 2007. DOI: 10.1088/1741-2560/4/2/R01
dc.relation[3] J. D. R. Millán, R. Rupp, G. R. Müller-Putz, R. Murray-Smith, C. Giugliemma, M. Tangermann, C. Vidaurre, F. Cincotti, A. Kübler, R. Leeb, C. Neuper, K.-R. Müller, and D. Mattia, “Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges.,” Front. Neurosci., vol. 4, Jan. 2010. DOI: 10.3389/fnins.2010.00161
dc.relation[4] C. I. Penaloza, Y. Mae, M. Kojima, and T. Arai, “BMI-based framework for teaching and evaluating robot skills,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 6040–6046. DOI: 10.1109/ICRA.2014.6907749
dc.relation[5] B. B. Longo, A. B. Benevides, J. Castillo, and T. Bastos-Filho, “Using Brain-Computer Interface to control an avatar in a Virtual Reality Environment,” in 5th ISSNIP-IEEE Biosignals and Biorobotics Conference (2014): Biosignals and Robotics for Better and Safer Living (BRC), 2014, pp. 1–4. DOI: 10.1109/BRC.2014.6880960
dc.relation[6] J. Webb, Z. G. Xiao, K. P. Aschenbrenner, G. Herrnstadt, and C. Menon, “Towards a portable assistive arm exoskeleton for stroke patient rehabilitation controlled through a brain computer interface,” in 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2012, pp. 1299–1304. DOI: 10.1109/BioRob.2012.6290674
dc.relation[7] M. Perakakis and A. Potamianos, “Affective evaluation of a mobile multimodal dialogue system using brain signals,” in 2012 IEEE Spoken Language Technology Workshop (SLT), 2012, pp. 43–48. DOI: 10.1109/SLT.2012.6424195
dc.relation[8]Rechy-Ramirez, E.J.; Huosheng Hu; McDonald-Maier, K., "Head movements based control of an intelligent wheelchair in an indoor environment," Robotics and Biomimetics (ROBIO), 2012 IEEE International Conference on , vol., no., pp.1464,1469, 11-14 Dec. 2012. DOI: 10.1109/ROBIO.2012.6491175
dc.relation[9]Risangtuni, A.G.; Suprijanto; Widyotriatmo, A., "Towards online application of wireless EEG-based open platform Brain Computer Interface," Control, Systems & Industrial Informatics (ICCSII), 2012 IEEE Conference on , vol., no., pp.141,144, 23-26 Sept. 2012. DOI: 10.1109/CCSII.2012.6470489
dc.relation[10]Yue Liu; Xiao Jiang; Teng Cao; Feng Wan; Peng Un Mak; Pui-In Mak; Mang-I Vai, "Implementation of SSVEP based BCI with Emotiv EPOC," Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS), 2012 IEEE International Conference on , vol., no., pp.34,37, 2-4 July 2012. DOI: 10.1109/VECIMS.2012.6273184.
dc.relation[11]Chumerin, N.; Manyakov, N.V.; van Vliet, M.; Robben, A.; Combaz, A.; Van Hulle, M, "Steady-State Visual Evoked Potential-Based Computer Gaming on a Consumer-Grade EEG Device," Computational Intelligence and AI in Games, IEEE Transactions on , vol.5, no.2, pp.100,110, June 2013. DOI: 10.1109/TCIAIG.2012.2225623
dc.relation[12]Puzi, N.S.Mohd; Jailani, R.; Norhazman, H.; Zaini, N.Mohamad, "Alpha and Beta brainwave characteristics to binaural beat treatment," Signal Processing and its Applications (CSPA), 2013 IEEE 9th International Colloquium on , vol., no., pp.344,348, 8-10 March 2013.DOI: 10.1109/CSPA.2013.6530069.
dc.relation[13]Jiménez Robinson, Espinosa Fabio, Amaya Dario, "Teleoperated systems: a perspective on telesurgery applications". En: Colombia Revista Ingeniería Biomédica ISSN: 1909-9762 ed: Escuela de Ingeniería de Antioquia v.7 fasc.14 p.29 - 40 ,2013
dc.relation[14]Emotiv Epoc & testbench™ specifications, Emotiv, 2014. Emotiv Software Development Kit User Manual for Release, Ed . 1.0.0.5.
dc.relation[15]Ríos G., L., & Bueno L., M. (2008). Modelo matemático para un robot móvil. Revista Scientia Et Technica. Año XIV, vol 38, Junio de 2008, pg 13-18.
dc.relation[16]Jiménez Robinson, Ramos Olga, "Análisis de la implementación de un controlador difuso sobre diferentes arquitecturas de hardware" . En: Colombia Ciencia E Ingeniería Neogranadina ISSN: 0124-8170 ed: Prueba. v.23 fasc.1 p.77 - 87 ,2013.
dc.relation2
dc.relation11
dc.relationINGE CUC
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceINGE CUC
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/387
dc.subjectBrain computer interface -BCI
dc.subjectEmotiv epoc
dc.subjectMobile robot
dc.subjectArduino
dc.subjectEEG
dc.titleControl of a mobile robot through brain computer interface
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución