dc.creator | Mayet, Abdulilah | |
dc.creator | Mehdi Alizadeh, Seyed | |
dc.creator | Azeez Kakarash, Zana | |
dc.creator | Al-Qahtani, Ali Awadh | |
dc.creator | Alanazi, Abdullah | |
dc.creator | Grimaldo Guerrero, John William | |
dc.creator | Alhashimi, Hala H. | |
dc.creator | Eftekhari-Zadeh, Ehsan | |
dc.date | 2022-08-04T14:24:50Z | |
dc.date | 2022-08-04T14:24:50Z | |
dc.date | 2022-07-13 | |
dc.date.accessioned | 2023-10-03T19:50:01Z | |
dc.date.available | 2023-10-03T19:50:01Z | |
dc.identifier | Mayet, A.M.; Alizadeh, S.M.; Kakarash, Z.A.; Al-Qahtani, A.A.; Alanazi, A.K.; Grimaldo Guerrero, J.W.; Alhashimi, H.H.; Eftekhari-Zadeh, E. Increasing the Efficiency of a Control System for Detecting the Type and Amount of Oil Product Passing through Pipelines Based on Gamma-Ray Attenuation, Time Domain Feature Extraction, and Artificial Neural Networks. Polymers 2022, 14, 2852. https://doi.org/10.3390/ polym14142852 | |
dc.identifier | https://hdl.handle.net/11323/9429 | |
dc.identifier | https://doi.org/10.3390/polym14142852 | |
dc.identifier | 10.3390/polym14142852 | |
dc.identifier | 2073-4360 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9172459 | |
dc.description | Instantaneously determining the type and amount of oil product passing through pipelines is one of the most critical operations in the oil, polymer and petrochemical industries. In this research, a detection system is proposed in order to monitor oil pipelines. The system uses a dual-energy gamma source of americium-241 and barium-133, a test pipe, and a NaI detector. This structure is implemented in the Monte Carlo N Particle (MCNP) code. It should be noted that the results of this simulation have been validated with a laboratory structure. In the test pipe, four oil products—ethylene glycol, crude oil, gasoil, and gasoline—were simulated two by two at various volume percentages. After receiving the signal from the detector, the feature extraction operation was started in order to provide suitable inputs for training the neural network. Four time characteristics—variance, fourth order moment, skewness, and kurtosis—were extracted from the received signal and used as the inputs of four Radial Basis Function (RBF) neural networks. The implemented neural networks were able to predict the volume ratio of each product with great accuracy. High accuracy, low cost in implementing the proposed system, and lower computational cost than previous detection methods are among the advantages of this research that increases its applicability in the oil industry. It is worth mentioning that although the presented system in this study is for monitoring of petroleum fluids, it can be easily used for other types of fluids such as polymeric fluids. | |
dc.format | 16 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | MDPI AG | |
dc.publisher | Switzerland | |
dc.relation | Polymers | |
dc.relation | 1. Hosseini, S.; Taylan, O.; Abusurrah, M.; Akilan, T.; Nazemi, E.; Eftekhari-Zadeh, E.; Bano, F.; Roshani, G.H. Application of Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas–Liquid Two-Phase Flow Meters Used in Oil and Petrochemical Industries. Polymers 2021, 13, 3647. [CrossRef] [PubMed] | |
dc.relation | 2. Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H.; Peyvandi, R.G.; Setayeshi, S. Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation. Nucl. Eng. Technol. 2016, 48, 64–71. [CrossRef] | |
dc.relation | 3. Roshani, G.; Nazemi, E.; Feghhi, S. Investigation of using 60 Co source and one detector for determining the flow regime and
void fraction in gas–liquid two-phase flows. Flow Meas. Instrum. 2016, 50, 73–79. [CrossRef] | |
dc.relation | 4. Roshani, G.H.; Karami, A.; Nazemi, E.; Shama, F. Volume fraction determination of the annular three-phase flow of gas-oil-water
using adaptive neuro-fuzzy inference system. Comput. Appl. Math. 2018, 37, 4321–4341. [CrossRef] | |
dc.relation | 5. Roshani, M.; Phan, G.; Roshani, G.H.; Hanus, R.; Nazemi, B.; Corniani, E.; Nazemi, E. Combination of X-ray tube and GMDH neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows. Measurement 2021, 168, 108427. [CrossRef] | |
dc.relation | 6. Roshani, G.H.; Karami, A.; Nazemi, E. An intelligent integrated approach of Jaya optimization algorithm and neu-ro-fuzzy network to model the stratified three-phase flow of gas–oil–water. Comput. Appl. Math. 2019, 38, 5. [CrossRef] | |
dc.relation | 7. Sattari, M.A.; Roshani, G.H.; Hanus, R. Improving the structure of two-phase flow meter using feature extraction and GMDH neural network. Radiat. Phys. Chem. 2020, 171, 108725. [CrossRef] | |
dc.relation | 8. Sattari, M.A.; Roshani, G.H.; Hanus, R.; Nazemi, E. Applicability of time-domain feature extraction methods and artificial intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 2021, 168, 108474. [CrossRef] | |
dc.relation | 9. Roshani, M.; Sattari, M.A.; Ali PJ, M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Application of GMDH neural network technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter. Flow Meas. Instrum. 2020, 75, 101804. [CrossRef] | |
dc.relation | 10. Alamoudi, M.; Sattari, M.; Balubaid, M.; Eftekhari-Zadeh, E.; Nazemi, E.; Taylan, O.; Kalmoun, E. Application of Gamma Attenuation Technique and Artificial Intelligence to Detect Scale Thickness in Pipelines in Which Two-Phase Flows with Different Flow Regimes and Void Fractions Exist. Symmetry 2021, 13, 1198. [CrossRef] | |
dc.relation | 11. Roshani, M.; Phan, G.; Faraj, R.H.; Phan, N.H.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Proposing a gamma radia-tion based intelligent system for simultaneous analyzing and detecting type and amount of petroleum by-products. Nucl. Eng. Technol. 2021, 53, 1277–1283. [CrossRef] | |
dc.relation | 12. Basahel, A.; Sattari, M.; Taylan, O.; Nazemi, E. Application of Feature Extraction and Artificial Intelligence Techniques for Increasing the Accuracy of X-ray Radiation Based Two Phase Flow Meter. Mathematics 2021, 9, 1227. [CrossRef] | |
dc.relation | 13. Taylan, O.; Sattari, M.A.; Essoussi, I.E.; Nazemi, E. Frequency Domain Feature Extraction Investigation to Increase the Accuracy of an Intelligent Nondestructive System for Volume Fraction and Regime Determination of Gas-Water-Oil Three-Phase Flows. Mathematics 2021, 9, 2091. [CrossRef] | |
dc.relation | 14. Roshani, G.H.; Ali, P.J.M.; Mohammed, S.; Hanus, R.; Abdulkareem, L.; Alanezi, A.A.; Sattari, M.A.; Amiri, S.; Nazemi, E.; Eftekhari-Zadeh, E.; et al. Simula-tion Study of Utilizing X-ray Tube in Monitoring Systems of Liquid Petroleum Products. Processes 2021, 9, 828. [CrossRef] | |
dc.relation | 15. Balubaid, M.; Sattari, M.A.; Taylan, O.; Bakhsh, A.A.; Nazemi, E. Applications of Discrete Wavelet Transform for Feature Extraction to Increase the Accuracy of Monitoring Systems of Liquid Petroleum Products. Mathematics 2021, 9, 3215. [CrossRef] | |
dc.relation | 16. Mayet, A.M.; Alizadeh, S.M.; Nurgalieva, K.S.; Hanus, R.; Nazemi, E.; Narozhnyy, I.M. Extraction of Time-Domain Characteristics and Selection of Effective Features Using Correlation Analysis to Increase the Accuracy of Petroleum Fluid Monitoring Systems. Energies 2022, 15, 1986. [CrossRef] | |
dc.relation | 17. Nazemi, E.; Roshani, G.H.; Feghhi, S.A.H.; Setayeshi, S.; Zadeh, E.E.; Fatehi, A. Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique. Int. J. Hydrogen Energy 2016, 41, 7438–7444. [CrossRef] | |
dc.relation | 18. Sattari, M.A.; Korani, N.; Hanus, R.; Roshani, G.H.; Nazemi, E. Improving the performance of gamma radiation based two phase flow meters using optimal time characteristics of the detector output signal extraction. J. Nucl. Sci. Technol. 2020, 41, 42–54. | |
dc.relation | 19. Isaev, A.A.; Aliev, M.M.O.; Drozdov, A.N.; Gorbyleva, Y.A.; Nurgalieva, K.S. Improving the Efficiency of Curved Wells’ Operation by Means of Progressive Cavity Pumps. Energies 2022, 15, 4259. [CrossRef] | |
dc.relation | 20. Lalbakhsh, A.; Mohamadpour, G.; Roshani, S.; Ami, M.; Roshani, S.; Sayem, A.S.M.; Alibakhshikenari, M.; Koziel, S. Design of a Compact Planar Transmission Line for Miniaturized Rat-Race Coupler With Harmonics Suppression. IEEE Access 2021, 9, 129207–129217. [CrossRef] | |
dc.relation | 21. Roshani, S.; Roshani, S. A compact coupler design using meandered line compact microstrip resonant cell (MLCMRC) and bended lines. Wirel. Netw. 2021, 27, 677–684. [CrossRef] | |
dc.relation | 22. Shukla, N.K.; Mayet, A.M.; Vats, A.; Aggarwal, M.; Raja, R.K.; Verma, R.; Muqeet, M.A. High speed integrated RF–VLC data communication system: Performance constraints and capac-ity considerations. Phys. Commun. 2022, 50, 101492. [CrossRef] | |
dc.relation | 23. Hookari, M.; Roshani, S.; Roshani, S. High-efficiency balanced power amplifier using miniaturized harmonics suppressed coupler. Int. J. RF Microw. Comput.-Aided Eng. 2020, 30, e22252. [CrossRef] | |
dc.relation | 24. Mayet, A.; Hussain, A.; Hussain, M. Three-terminal nanoelectromechanical switch based on tungsten nitride, an amor-phous metallic material. Nanotechnology 2016, 27, 035202. [CrossRef] | |
dc.relation | 25. Lotfi, S.; Roshani, S.; Roshani, S.; Gilan, M.S. Wilkinson power divider with band-pass filtering response and harmonics suppression using open and short stubs. Frequenz 2020, 74, 169–176. [CrossRef] | |
dc.relation | 26. Mayet, A.; Hussain, M. Amorphous WNx Metal For Accelerometers and Gyroscope. In Proceedings of the MRS Fall Meeting, Boston, MA, USA, 30 November–5 December 2014. | |
dc.relation | 27. Jamshidi, M.; Siahkamari, H.; Roshani, S.; Roshani, S. A compact Gysel power divider design using U-shaped and T-shaped resonators with harmonics suppression. Electromagnetics 2019, 39, 491–504. [CrossRef] | |
dc.relation | 28. Mayet, A.; Smith, C.E.; Hussain, M.M. Energy reversible switching from amorphous metal based nanoelectromechanical switch. In Proceedings of the Nanotechnology (IEEE-NANO), 2013 13th IEEE Conference, Beijing, China, 5–8 August 2013; pp. 366–369. | |
dc.relation | 29. Roshani, S.; Roshani, S. Two-section impedance transformer design and modeling for power amplifier applications. Appl. Comput. Electromagn. Soc. J. 2017, 32, 1042–1047. | |
dc.relation | 30. Khaibullina, K.S.; Sagirova, L.R.; Sandyga, M.S. Substantiation and selection of an inhibitor for preventing the formation of asphaltresin-paraffin deposits. [Substanciação e seleção de um inibidor para evitar a formação de depósitos de asfalto-resina-parafina]. Period. Tche Quim. 2020, 17, 541–551. | |
dc.relation | 31. Jamshidi, M.B.; Roshani, S.; Talla, J.; Roshani, S.; Peroutka, Z. Size reduction and performance improvement of a microstrip Wil-kinson power divider using a hybrid design technique. Sci. Rep. 2021, 11, 7773. [CrossRef] | |
dc.relation | 32. Mayet, A.; Smith, C.; Hussain, M.M.; Smith, C. Amorphous metal based nanoelectromechanical switch. In Proceedings of the 2013 Saudi International Electronics, Communications and Photonics Conference, Riyadh, Saudi Arabia, 27–30 April 2013; pp. 1–5. [CrossRef] | |
dc.relation | 33. Hookari, M.; Roshani, S.; Roshani, S. Design of a low pass filter using rhombus-shaped resonators with an analytical LC equiv-alent circuit. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 865–874. [CrossRef] | |
dc.relation | 34. Khaibullina, K.S.; Korobov, G.Y.; Lekomtsev, A.V. Development of an asphalt-resin-paraffin deposits inhibitor and substantiation of the technological parameters of its injection into the bottom-hole formation zone. [Desenvolvimento de um inibidor de depósito de asfalto-resinaparafina e subscantiação dos parâmetros tecnológicos de sua injeção na zona de formação de furo inferior]. Period. Tche Quim. 2020, 17, 769–781. | |
dc.relation | 35. Pirasteh, A.; Roshani, S.; Roshani, S. Design of a miniaturized class F power amplifier using capacitor loaded transmission lines. Frequenz 2020, 74, 145–152. [CrossRef] | |
dc.relation | 36. Tikhomirova, E.A.; Sagirova, L.R.; Khaibullina, K.S. A review on methods of oil saturation modelling using IRAP RMS. IOP Conf. Ser. Earth Environ. Sci. 2019, 378, 012075. [CrossRef] | |
dc.relation | 37. Roshani, S.; Dehghani, K.; Roshani, S. A lowpass filter design using curved and fountain shaped resonators. Frequenz 2019, 73, 267–272. [CrossRef] | |
dc.relation | 38. Khaibullina, K. Technology to Remove Asphaltene, Resin and Paraffin Deposits in Wells Using Organic Solvents. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai, United Arab Emirates, 26–28 September 2016. [CrossRef] | |
dc.relation | 39. Roshani, S.; Roshani, S. Design of a compact LPF and a miniaturized Wilkinson power divider using aperiodic stubs with harmonic suppression for wireless applications. Wirel. Netw. 2020, 26, 1493–1501. [CrossRef] | |
dc.relation | 40. Alanazi, A.K.; Alizadeh, S.M.; Nurgalieva, K.S.; Guerrero, J.W.G.; Abo-Dief, H.M.; Eftekhari-Zadeh, E.; Nazemi, E.; Narozhnyy, I.M. Optimization of X-ray Tube Voltage to Improve the Precision of Two Phase Flow Meters Used in Petroleum Industry. Sustainability 2021, 13, 13622. [CrossRef] | |
dc.relation | 41. Alanazi, A.K.; Alizadeh, S.M.; Nurgalieva, K.S.; Nesic, S.; Guerrero, J.W.G.; Abo-Dief, H.M.; Eftekhari-Zadeh, E.; Nazemi, E.; Narozhnyy, I.M. Application of Neural Network and Time-Domain Feature Extraction Techniques for Determining Volumetric Percentages and the Type of Two Phase Flow Regimes Independent of Scale Layer Thickness. Appl. Sci. 2022, 12, 1336. [CrossRef] | |
dc.relation | 42. Mayet, A.M.; Salama, A.S.; Alizadeh, S.M.; Nesic, S.; Guerrero, J.W.G.; Eftekhari-Zadeh, E.; Nazemi, E.; Iliyasu, A.M. Applying Data Mining and Artificial Intelligence Techniques for High Precision Measuring of the Two-Phase Flow’s Characteristics Independent of the Pipe’s Scale Layer. Electronics 2022, 11, 459. [CrossRef] | |
dc.relation | 43. Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P.; Smith, S.L. Low-Cost Non-Uniform Metallic Lattice for Rectifying Aperture Near-Field of Electromagnetic Bandgap Resonator Antennas. IEEE Trans. Antennas Propag. 2020, 68, 3328–3335. [CrossRef] | |
dc.relation | 44. Paul, G.S.; Mandal, K.; Lalbakhsh, A. Single-layer ultra-wide stop-band frequency selective surface using interconnected square rings. AEU-Int. J. Electron. Commun. 2021, 132, 153630. [CrossRef] | |
dc.relation | 45. Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P. Simulation-driven particle swarm optimization of spatial phase shifters. In Proceedings of the 18th IEEE international Conference on Electromagnetics in Advanced Applications (ICEAA), Cairns, Australia, 5–9 September 2016; pp. 428–430. [CrossRef] | |
dc.relation | 46. Lalbakhsh, A.; Lotfi-Neyestanak, A.A.; Naser-Moghaddasi, M. Microstrip Hairpin Bandpass Filter Using Modified Minkowski Fractal-for Suppression of Second Harmonic. IEICE Trans. Electron. 2012, E95-C, 378–381. [CrossRef] | |
dc.relation | 47. Hartman, E.J.; Keeler, J.D.; Kowalski, J.M. Layered neural networks with Gaussian hidden units as universal approximators. Neural Comput. 1990, 2, 210–215. [CrossRef] | |
dc.relation | 48. Yu, B.; He, X. Training radial basis function networks with differential evolution. In Proceedings of the IEEE International
Conference on Granular Computing, Atlanta, GA, USA, 10–12 May 2006; pp. 369–372. [CrossRef] | |
dc.relation | 49. Çolak, A.B. An experimental study on the comparative analysis of the effect of the number of data on the error rates of artificial
neural networks. Int. J. Energy Res. 2021, 45, 478–500. [CrossRef] | |
dc.relation | 50. Çolak, A.B.; Shafiq, A.; Sindhu, T.N. Modeling of Darcy–Forchheimer bioconvective Powell Eyring nanofluid with artificial neural network. Chin. J. Phys. 2022, 77, 2435–2453. [CrossRef] | |
dc.relation | 51. Shafiq, A.; Çolak, A.B.; Lone, S.A.; Sindhu, T.N.; Muhammad, T. Reliability modeling and analysis of mixture of exponential distributions using artificial neural net-work. Math. Methods Appl. Sci. 2022, 45, 1–21. [CrossRef] | |
dc.relation | 52. Hosseini, S.; Roshani, G.H.; Setayeshi, S. Precise gamma based two-phase flow meter using frequency feature extraction and only
one detector. Flow Meas. Instrum. 2020, 72, 101693. [CrossRef] | |
dc.relation | 53. Roshani, M.; Ali, P.J.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Phan, N.H.; Tran, H.N.; Nazemi, E. X-ray tube with artificial neural net-work model as a promising alternative for radioisotope source in radiation based two phase flowmeters. Appl. Radia-Tion Isot.
2020, 164, 109255. [CrossRef] | |
dc.relation | 54. Peyvandi, R.G.; Rad, S.I. Application of artificial neural networks for the prediction of volume fraction using spectra of gamma
rays backscattered by three-phase flows. Eur. Phys. J. Plus 2017, 132, 511. [CrossRef] | |
dc.relation | 55. Roshani Gholam, H.; Ehsan, N.; Farzin, S.; Imani Mohammad, A.; Salar, M. Designing a simple radiometric system to predict
void fraction percentage independent of flow pattern using radial basis function. Metrol. Meas. Syst. 2018, 25, 347–358. | |
dc.relation | 56. Roshani, G.H.; Nazemi, E.; Feghhi, S.A.H.; Setayeshi, S. Flow regime identification and void fraction prediction in two-phase
flows based on gamma ray attenuation. Measurement 2015, 62, 25–32. [CrossRef] | |
dc.relation | 16 | |
dc.relation | 1 | |
dc.relation | 14 | |
dc.relation | 14 | |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
dc.rights | © 2022 by the authors. Licensee MDPI, Basel, Switzerland. | |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://www.mdpi.com/2073-4360/14/14/2852 | |
dc.subject | Detection system | |
dc.subject | Feature extraction | |
dc.subject | RBF neural network | |
dc.subject | Oil and polymeric fluids | |
dc.subject | Dual-energy gamma source | |
dc.title | Increasing the efficiency of a control system for detecting the type and amount of oil product passing through pipelines based on gamma-ray attenuation, time domain feature extraction, and artificial neural networks | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |