dc.creatorsilva d, jesus g
dc.creatorSenior Naveda, Alexa
dc.creatorHernández Palma, Hugo
dc.creatorNiebles Núñez, William
dc.creatorJiménez - Rodríguez, Luis Miguel
dc.date2020-01-30T13:45:56Z
dc.date2020-01-30T13:45:56Z
dc.date2020
dc.date.accessioned2023-10-03T19:49:58Z
dc.date.available2023-10-03T19:49:58Z
dc.identifier1742-6588
dc.identifier1742-6596
dc.identifierhttp://hdl.handle.net/11323/5956
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172452
dc.descriptionIndicators are the most important management tool for environmental monitoring. Environmental indicators condense the information and simplify the approach to environmental phenomena, which are often complex, and makes them very useful for communication. The usefulness of these indicators consists of providing relevant information, summarized in the form of concise and illustrative statements for decision making, both for the organization's management and for the rest of the members. The prediction of limit values, together with the potentialities offered by the recommendation system based on ontology make this system a powerful tool for supporting decision-making in the Environmental Management process with a wide possibility of generalization in the business sector.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherJournal of Physics: Conference Series
dc.relation10.1088/1742-6596/1432/1/012049/pdf
dc.relation[1] Cios, K. J., & Kurgan, L. A. (2000). Trends in Data Mining and Knowledge Discovery. (Dm), 1- 26.
dc.relation[2] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham
dc.relation[3] Demsar, J. (2006). Comparison of Classifiers over Multiple Data Sets. Journal of Machine Learning Research, vol. 7: 31.
dc.relation[4] Hutt, S.; Gardener, M.; Kamentz, D.; Duckworth, A.; D'Mello, S.: Prospectively Predicting 4- year College Graduation from Student Applications. Proceedings of the 8th International Conference on Learning Analytics and Knowledge, pp. 280-289 (2018)
dc.relation[5] Ahuja, R.; Kankane, Y.: Predicting the probability of student's degree completion by using different data mining techniques. Fourth International Conference on Image Information Processing (ICIIP), pp. 1-4 (2017)
dc.relation[6] Martins, L.; Carvalho, R.; Victorino, C.; Holanda, M.: Early Prediction of College Attrition Using Data Mining. 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1075-1078 (2017)
dc.relation[7] IHOBE. (1999). Guía de Indicadores Medioambientales para la Empresa. Berlin: Ministerio Federal para el Medio Ambiente, la Conservación de la Naturaleza y la Seguridad Nuclear.
dc.relation[8] Russell, S.; Norvig, P.: Artificial Intelligence A Modern Approach. Pearson Education 3rd Ed, pp. 705 (2010)
dc.relation[9] Makhabel, B.: Learning Data Mining with R. Packt Publishing 1st Ed, pp. 143 (2015)
dc.relation[10] Witten, I.; Frank, E.; Hall, M.; Pal, C.: Data Mining Practical Machine Learning Tools and Techniques. Elsevier 4th Ed, pp. 167-169 (2016).
dc.relation[11] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. (2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data (pp. 149-158). Springer, Cham.
dc.relation[12] Gaitán-Angulo, M., Viloria, A., & Abril, J. E. S. (2018, June). Hierarchical Ascending Classification: An Application to Contraband Apprehensions in Colombia (2015–2016). In Data Mining and Big Data: Third International Conference, DMBD 2018, Shanghai, China, June 17– 22, 2018, Proceedings (Vol. 10943, p. 168). Springer.
dc.relation[13] Viloria, A., & Lezama, O. B. P. (2019). An intelligent approach for the design and development of a personalized system of knowledge representation. Procedia Computer Science , 151 , 1225- 1230.
dc.relation[14] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham
dc.relation[15] Viloria, A., Bucci, N., Luna, M., Lis-Gutiérrez, J. P., Parody, A., Bent, D. E. S., & López, L. A. B. (2018, June). Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In International Conference on Data Mining and Big Data (pp. 304-313). Springer, Cham.
dc.relation[16] Bishop, C. (1995). Extremely well-written, up-to-date. Requires a good mathematical background, but rewards careful reading, putting neural networks firmly into a statistical context. Neural Networks for Pattern Recognition.
dc.relation[17] Pretnar, A. The Mystery of Test & Score. Ljubljana: University of Ljubljana. Retrieved from: https://orange.biolab.si/blog/2019/1/28/the-mystery-of-test-and-score/ (2019).
dc.relation[18] Castellanos Domíngez, M. I., Quevedo Castro, C. M., Vega Ramírez, A., Grangel González, I., & Moreno Rodríguez, R. (2016). Sistema basado en ontología para el apoyo a la toma de decisiones en el proceso de gestión ambiental empresarial. Paper presented at the II International Workshop of Semantic Web, La Habana, Cuba. http://ceur-ws.org/Vol-1797/
dc.relation[19] Yasser, A. M., Clawson, K., & Bowerman, C.: Saving cultural heritage with digital make-believe: machine learning and digital techniques to the rescue. In Proceedings of the 31st British Computer Society Human Computer Interaction Conference (p. 97). BCS Learning & Development Ltd. (2017).
dc.relation[20] Castellanos Domínguez, M. I., & Grangel González, I. (2013). Las ontologías, su uso para la gestión del conocimiento medioambiental. Paper presented at the III Taller Internacional la Matemática, la Informática y la Física en el Siglo XXI, Holguín.
dc.relation[21] Khelifi, F. J., J. (2011). K-NN Regression to Improve Statistical Feature Extraction for Texture Retrieval. IEEE Transactions on Image Processing, 20, 293-298.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectArtificial neural networks
dc.subjectEnvironmental indicators
dc.subjectEnvironmental monitoring
dc.titleEnvironmental indicators through artificial neural networks
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución