dc.creatorCarpintero, Javier
dc.creatorA. Canales, Fausto
dc.creatorFábregas, Jonathan
dc.creatorÁvila, José
dc.date2021-07-27T13:43:48Z
dc.date2021-07-27T13:43:48Z
dc.date2021
dc.date.accessioned2023-10-03T19:49:28Z
dc.date.available2023-10-03T19:49:28Z
dc.identifierhttps://hdl.handle.net/11323/8494
dc.identifierhttps://doi.org/10.1007/s40996-021-00682-z
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172368
dc.descriptionEfficient water supply systems are necessary for the development and sustainability of human societies. One relevant aspect of these systems is the metering function, recorded employing water meters, which determines the charges levied to the clients and estimates the water losses in the network. Inaccurate measurements are detrimental for both the client and the supplier. For allowing more precise metering, one option is to use an air volume reducing device, an accessory similar to a check valve that minimizes the air volume entrapped in the pipelines, thus improving metering accuracy. This research used an experimental design to determine the influence of four factors and their interactions on the pressure drop across these devices as a preliminary step for allowing their extended use on low-pressure water supply systems. The results showed that the diameter, the spring stiffness, and the flow rate are significant factors in the pressure drop. The shape of the valve stem is statistically significant only when interacting with other factors.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.relationAghaei B (2011) Using wireless sensor network in water, electricity and gas industry. In: Proceedings of the 2011 3rd international conference on electronics computer technology. pp 14–17
dc.relationAli F, Saidi MFH (2021) Water leakage detection based on automatic meter reading. In: Proceedings of the 2021 15th international conference on ubiquitous information management and communication (IMCOM). pp 1–7
dc.relationAl-Obaidi AR (2021) Investigation of the flow, pressure drop characteristics, and augmentation of heat performance in a 3D flow pipe based on different inserts of twisted tape configurations. Heat Transf. https://doi.org/10.1002/htj.22115
dc.relationAlsobaai AM (2013) Thermal cracking of petroleum residue oil using three level factorial design. J King Saud Univ Eng Sci 25:21–28. https://doi.org/10.1016/j.jksues.2011.06.003
dc.relationAshby GC, Staylor WF (1968) Aerodynamic characteristics of a modified cone-conical-frustum entry configuration at Mach 6.0. Hampton, VA
dc.relationAqua Saving (2019) Waterprofit. https://www.waterprofit.com/. Accessed 6 Jun 2019
dc.relationBalaguer-Garrigós M (2012) Desarrollo de una Herramienta para la evaluación preliminar de la gestión técnica de un parque de contadores doméstico. Aplicación en el abastecimiento de Aranda de Duero. Universitat Politècnica de València
dc.relationBeg S, Raza K (2021) Full factorial and fractional factorial design applications in pharmaceutical product development. In: Springer (ed) Design of experiments for pharmaceutical product development. Springer, Singapore, pp 43–53
dc.relationBen Zaied Y, Kertous M, Ben Cheikh N, Ben Lahouel B (2020) Delayed payment of residential water invoice and sustainability of water demand management. J Clean Prod 276:123517. https://doi.org/10.1016/j.jclepro.2020.123517
dc.relationBergada JM, Watton J (2004) A direct solution for flowrate and force along a cone-poppet valve for laminar flow conditions. Proc Inst Mech Eng Part I J Syst Control Eng. https://doi.org/10.1177/095965180421800304
dc.relationBerrios M, Gutiérrez MC, Martín MA, Martín A (2009) Application of the factorial design of experiments to biodiesel production from lard. Fuel Process Technol 90:1447–1451. https://doi.org/10.1016/j.fuproc.2009.06.026
dc.relationBocos JC, Vilar Bocos JC (2015) Airflow restricting valve assembly. 14
dc.relationBohra LK, Mincks LM, Garimella S (2020) Experimental investigation of pressure drop characteristics of viscous fluid flow through small diameter orifices. J Fluids Eng. https://doi.org/10.1115/1.4048617
dc.relationBonetto LR, Crespo JS, Guégan R et al (2021) Removal of methylene blue from aqueous solutions using a solid residue of the apple juice industry: full factorial design, equilibrium, thermodynamics and kinetics aspects. J Mol Struct 1224:129296. https://doi.org/10.1016/j.molstruc.2020.129296
dc.relationBossard J, Reich A, DiMeo A (2020) Dynamic analysis of a high-pressure relief valve during opening. J Press Vessel Technol. https://doi.org/10.1115/1.4047865
dc.relationBrandt MJ, Johnson KM, Elphinston AJ, Ratnayaka DD (2017) Chapter 1: the demand for potable water. In: Brandt MJ, Johnson KM, Elphinston AJ, Ratnayaka DDBT-TWS, Seventh E (eds) Butterworth-Heinemann, Boston, pp 1–36
dc.relationBrown CA, Pena JL (2016) Water meters and monthly bills meet rural brazilian communities: sociological perspectives on technical objects for water management. World Dev 84:149–161. https://doi.org/10.1016/j.worlddev.2016.03.014
dc.relationBurrows ND, Harvey S, Idesis FA, Murphy CJ (2017) Understanding the seed-mediated growth of gold nanorods through a fractional factorial design of experiments. Langmuir 33:1891–1907. https://doi.org/10.1021/acs.langmuir.6b03606
dc.relationCacua K, Buitrago-Sierra R, Herrera B et al (2017) Influence of different parameters and their coupled effects on the stability of alumina nanofluids by a fractional factorial design approach. Adv Powder Technol 28:2581–2588. https://doi.org/10.1016/j.apt.2017.07.009
dc.relationCarandang VW, Ubando AT, Culaba AB (2019) Identification of factor significance in a water cooling pipe section using ANSYS CFD through a full factorial design of experiment. 0–4
dc.relationCarpintero J, Fabregas J, Pérez S, et al (2018) Ingeniería inversa sobre un dispositivo ahorrador de consumo de agua para su potencial aplicación en ciudades con presiones hidráulicas por debajo de 40 PSIg. Rev Compet Innovación 68–78
dc.relationÇengel Y, Cimbala JM (2012) Mecánica de fluidos: fundamentos y aplicaciones, Mc Graw Hi. Mc Graw Hill, Madrid
dc.relationÇengel Y, Cimbala JM (2018) Fluid mechanics. Fundamentals and applications, 4th edn. Mc Graw Hill, New York
dc.relationCherukutota N, Jadhav S (2016) Architectural framework of smart water meter reading system in IoT environment. In: Proceedings of the 2016 international conference on communication and signal processing (ICCSP). pp 791–794
dc.relationCrane Co (2013) Flow of Fluids through valves, fittings and pipe. Technical Paper No. 410. Crane Co., Stamford, CT
dc.relationCollins LM, Trail JB, Kugler KC et al (2014) Evaluating individual intervention components: making decisions based on the results of a factorial screening experiment. Transl Behav Med 4:238–251. https://doi.org/10.1007/s13142-013-0239-7
dc.relationComisión Nacional del Agua (2007) Manual para el diseño de sistemas de agua potable y alcantarillado sanitario: Diseño de redes de distribución de agua potable. Comisión Nacional del Agua, México D.F.
dc.relationCotter SC (1979) A screening design for factorial experiments with interactions. Biometrika 66:317–320. https://doi.org/10.1093/biomet/66.2.317
dc.relationCRANE (2009) Flow of fluids through valves, fittings an pipe. USA
dc.relationEcowa México S.A.P.I. de C.V. (2018) Ecowa Air Retention. https://ecowa.com.mx/. Accessed 5 May 2019
dc.relationde Aquino GA, De Lucca Y, de FL, Dalfré Filho JG, (2018) The importance of experimental tests on air valves for proper choice in a water supply project. J Brazil Soc Mech Sci Eng 40:403. https://doi.org/10.1007/s40430-018-1306-2
dc.relationDelgado Fuentealba CL, Muñoz Mendoza JA, Sepúlveda Yelpo SM et al (2021) Household debt, automatic bill payments and inattention: theory and evidence. J Econ Psychol 85:102385. https://doi.org/10.1016/j.joep.2021.102385
dc.relationDescamps MN, Oliemans RVA, Ooms G, Mudde RF (2008) Air–water flow in a vertical pipe: experimental study of air bubbles in the vicinity of the wall. Exp Fluids 45:357–370. https://doi.org/10.1007/s00348-008-0484-6
dc.relationEl-Taybany Y, Hossam M, El-Hofy H (2017) Experimental investigation of ultrasonic-assisted milling of soda glass using factorial design of experiments. Proced CIRP 58:381–386. https://doi.org/10.1016/j.procir.2017.03.238
dc.relationEmma MF, Gianluca M, Adolfo S, Pavanetto (2018) Numerical and experimental investigation for the design of a directional spool valve. Energy Proced 274–280
dc.relationEscarameia M, Burrows R, Little M, Murray S (2005) Air problems in pipelines
dc.relationFerreira JP, Buttarazzi N, Ferras D, Covas DIC (2021) Effect of an entrapped air pocket on hydraulic transients in pressurized pipes. J Hydraul Res. https://doi.org/10.1080/00221686.2020.1862323
dc.relationFilo G, Lisowski E, Rajda J (2021) Design and flow analysis of an adjustable check valve by means of CFD method. Energies 14
dc.relationGass RC, Handley DA (2016a) Valve apparatus for regulating fluids through a pipe. 16
dc.relationGass RC, Handley DA (2016b) Fluid control apparatus, systems and methods. 12
dc.relationHajjaji N, Renaudin V, Houas A, Pons MN (2010) Factorial design of experiment (DOE) for parametric exergetic investigation of a steam methane reforming process for hydrogen production. Chem Eng Process Process Intensif 49:500–507. https://doi.org/10.1016/j.cep.2010.03.017
dc.relationHan L, Jiang K, Wang Q, et al (2020) Quantitative evaluation on valve leakage of reciprocating compressor using system characteristic diagnosis method. Appl Sci 10
dc.relationHatami M, Zahraee SM, Khademi A et al (2014) Evaluating the effect of main factors in manufacturing production line based on simulation experiment. Appl Mech Mater 606:199–203
dc.relationJian H, Wei W, Li H, Yan Q (2018) Optimization of a pressure control valve for high power automatic transmission considering stability. Mech Syst Signal Process 101:182–196. https://doi.org/10.1016/j.ymssp.2017.08.018
dc.relationJin Z, Qiu C, Jiang C et al (2020) Effect of valve core shapes on cavitation flow through a sleeve regulating valve. J Zhejiang Univ A 21:1–14. https://doi.org/10.1631/jzus.A1900528
dc.relationKacmarcik J, Zaimovic-Uzunovic N, Lemes S (2020) Reverse engineering using 3D scanning and FEM analysis
dc.relationKapranova A, Lebedev A, Melzer A (2020) Calculation of hydraulic resistance in the separator of the direct-flow control valve with a rotary lock. E3S Web Conf. doi:https://doi.org/10.1051/e3sconf/202022001073
dc.relationKechagias JD, Aslani K-E, Fountas NA et al (2020) A comparative investigation of Taguchi and full factorial design for machinability prediction in turning of a titanium alloy. Measurement 151:107213. https://doi.org/10.1016/j.measurement.2019.107213
dc.relationKoech R (2015) Water density formulations and their effect on gravimetric water meter calibration and measurement uncertainties. Flow Meas Instrum 45:188–197. https://doi.org/10.1016/j.flowmeasinst.2015.06.009
dc.relationKoech R, Gyasi-Agyei Y, Randall T (2018) The evolution of urban water metering and conservation in Australia. Flow Meas Instrum 62:19–26. https://doi.org/10.1016/j.flowmeasinst.2018.03.011
dc.relationKumpel E, Nelson KL (2016) Intermittent water supply: prevalence, practice, and microbial water quality. Environ Sci Technol 50:542–553. https://doi.org/10.1021/acs.est.5b03973
dc.relationLaouar S, Sakib MN, Muqit AS et al (2020) Pressure drop in valve for different open flow areas. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1439/1/012009
dc.relationLaranja MJ, da Silva RCJ, Bisinoti MC et al (2020) Factorial design of experiments for extraction and screening analysis of organic compounds in hydrochar and its process water of sugar cane bagasse and vinasse. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-01035-y
dc.relationLi J, Yang F, Zhang H et al (2020) Comparative analysis of different valve timing control methods for single-piston free piston expander-linear generator via an orthogonal experimental design. Energy 195:116966. https://doi.org/10.1016/j.energy.2020.116966
dc.relationLotfi A, Rad M (2012) Drag performance of divergent tubular-truncated cones: a shape optimization study. Int J Environ Sci Technol 9:105–112. https://doi.org/10.1007/s13762-011-0003-9
dc.relationMajdič F (2020) Design and testing of a two-stage water-hydraulics pressure-relief valve. New Technol Dev Appl III. https://doi.org/10.1007/978-3-030-46817-0_5
dc.relationMinisterio de Vivienda Ciudad y Territorio (2017) Resolución 0330 de 2017: “Por la cual se adopta el Reglamento Técnico para el Sector de Agua Potable y Saneamiento Básico -RAS- y se derogan las resoluciones 1096 de 2000, 0424 de 2001, 0668 de 2003, 1459 de 2005, 1447 de 2005 y 2320 de 2009.” Minist. Vivienda, Ciudad y Territ. Repub. Colomb. 182
dc.relationManco-Silva D, Guerrero-Erazo J, Ocampo-Cruz A (2012) Eficiencia en el consumo de agua de uso residencial. Rev Ing Univ Medellín 11:23–38
dc.relationMarch H, Morote ÁF, Rico AM, Saurí D (2017) Household smart water metering in Spain: insights from the experience of remote meter reading in alicante. Sustain. https://doi.org/10.3390/su9040582
dc.relationMeng L, Cheng J (2021) Research on the visual recognition method of pointer water meter reading. In: Proceedings of the 2021 IEEE 5th advanced information technology, electronic and automation control conference (IAEAC). pp 909–914
dc.relationMinisterio de Desarrollo Económico (2000) Título A: aspectos generales de los sistemas de agua potable y saneamiento básico. In: Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico. Ministerio de desarrollo económico, Bogotá, p 107
dc.relationMojaddam M, Pullen KR (2019) Optimization of a centrifugal compressor using the design of experiment technique. Appl. Sci. 9
dc.relationMontgomery DC (2017) Design and analysis of experiments, 9th edn. Wiley, Hoboken, NJ
dc.relationMusaazi IG, Sempewo JI, Babu M, Kiggundu N (2021) Assessing the impact of working pressure on water meter registration. J Water Supply Res Technol. https://doi.org/10.2166/aqua.2021.123
dc.relationNabil T, Alhaddad F, Dawood M, Sharaf O (2020) Experimental and numerical investigation of flow hydraulics and pipe geometry on leakage behaviour of laboratory water network distribution systems. J Adv Res Fluid Mech Therm Sci 75:20–42. https://doi.org/10.37934/ARFMTS.75.2.2042
dc.relationNapreenko KS, Lamtyugina AV (2021) Hydraulic losses optimization methods used in air conditioning system valve design for different closure angles. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/1027/1/012022
dc.relationNguyen QK, Jung KH, Lee GN, et al (2020) Experimental study on pressure distribution and flow coefficient of globe valve. Process 8
dc.relationPadovani D, Rundo M, Altare G (2020) The working hydraulics of valve-controlled mobile machines: classification and review. J Dyn Syst Meas Control. https://doi.org/10.1115/1.4046334
dc.relationPauly CP (2012) Pay attention to check valves. World Pumps 42–43
dc.relationPotter M, Wiggert D, Ramadam B, Shih TI-P (2012) Mechanics of fluids, 4th edn. Cengage Learning, Stamford, CT
dc.relationRamos-Joseph M, Socarrás-Ordaz R, León-Méndez A (2019) Patrones de consumo doméstico de agua: primer resultado en la Empresa Aguas de La Habana. Ing Hidraul y Ambient 40:3–16
dc.relationRoekmi RAK, Chua LHC, Baskaran K (2018) Analysing piped water service provider performance based on consumer perceptions. Util Policy 55:79–89. https://doi.org/10.1016/j.jup.2018.09.011
dc.relationRokhzadi A, Fuamba M (2021) Investigation of air pocket behavior in pipelines using rigid column model and contributions of time integration schemes. Water 13
dc.relationRosero-Armijo CD (2019) Agua potable no contabilizada en el cantón Pangua y programa de control de pérdidas. Universidad de las Fuerzas Armadas, Ecuador
dc.relationSadeghifam AN, Zahraee SM, Meynagh MM, Kiani I (2015) Combined use of design of experiment and dynamic building simulation in assessment of energy efficiency in tropical residential buildings. Energy Build 86:525–533. https://doi.org/10.1016/j.enbuild.2014.10.052
dc.relationSasoh A, Kim J-H, Yamashita K, Sakai T (2014) Supersonic aerodynamic performance of truncated cones with repetitive laser pulse energy depositions. Shock Waves 24:59–67. https://doi.org/10.1007/s00193-013-0463-6
dc.relationSekhar Biswal S, Panda C, Sahoo S et al (2021) Assessment of factors influencing the elution of chromium from ferrochromium slag using factorial design of experiment. Mater Today Proc 35:97–101. https://doi.org/10.1016/j.matpr.2020.03.171
dc.relationShahin H, Vinjamuri BP, Mahmoud AA et al (2021) Formulation and optimization of sildenafil citrate-loaded PLGA large porous microparticles using spray freeze-drying technique: A factorial design and in-vivo pharmacokinetic study. Int J Pharm 597:120320. https://doi.org/10.1016/j.ijpharm.2021.120320
dc.relationShengwei P, Haixing L, Yan Z et al (2021) Identifying flow patterns in water pipelines using complex network theory. J Hydraul Eng 147:4021019. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001882
dc.relationSkinner AW, DiBernardo AM, Masud AM et al (2020) Factorial design of experiments for optimization of photocatalytic degradation of tartrazine by zinc oxide (ZnO) nanorods with different aspect ratios. J Environ Chem Eng 8:104235. https://doi.org/10.1016/j.jece.2020.104235
dc.relationSlama V, Mrozek L, Tajc L et al (2021) Flow analysis in a steam turbine control valve with through-flow valve chamber. J Nucl Eng Radiat Sci. https://doi.org/10.1115/1.4049055
dc.relationSmith P, Zappe RW (2004) Check valves. Valve Sel Handb 153–168
dc.relationSolaiman A, Suliman AS, Shinde S et al (2016) Application of general multilevel factorial design with formulation of fast disintegrating tablets containing croscaremellose sodium and Disintequick MCC-25. Int J Pharm 501:87–95. https://doi.org/10.1016/j.ijpharm.2016.01.065
dc.relationStephenson DJ (1989) Air in pipelines. In: Stephenson DJ (ed) Pipeline design for water engineers, 3rd edn. Elsevier, Amsterdam, pp 97–112
dc.relationSuleiman FK, Lin K, Daun KJ (2021) Development of a multivariate spectral emissivity model for an advanced high strength steel alloy through factorial design-of-experiments. J Quant Spectrosc Radiat Transf. https://doi.org/10.1016/j.jqsrt.2021.107693
dc.relationSun X, Kim S, Smith T, Ishii M (2002) Local liquid velocity measurements in air-water bubbly flow. Exp Fluids 33:653–662. https://doi.org/10.1007/s00348-002-0506-8
dc.relationÜcker CL, Goetzke V, Almeida SR et al (2021) Photocatalytic degradation of rhodamine B using Nb2O5 synthesized with different niobium precursors: factorial design of experiments. Ceram Int. https://doi.org/10.1016/j.ceramint.2021.04.066
dc.relationVerma V, Sahu R (2017) Process parameter optimization of die-sinking EDM on Titanium grade-V alloy (Ti6Al4V) using full factorial design approach. Mater Today Proc 4:1893–1899. https://doi.org/10.1016/j.matpr.2017.02.034
dc.relationVillegas JF, Carpintero J, Díaz Cantillo Á, et al (2020) Numerical simulation of the air content of a two-phase flow in a non-return valve for the correction of billing measures in domestic drinking water networks
dc.relationWalpole R, Myers R, Myers S, Ye K (2006) Probability and statistics for engineers and scientists, 8th Ed. New Jersey
dc.relationXu E, Nie C, Jiang X, Miao Z (2021) Theoretical investigation on the throttle pressure reducing valve through CFD simulation and validating experiments. Korean J Chem Eng 38:400–405. https://doi.org/10.1007/s11814-020-0703-2
dc.relationYadav BN, Muchhala D, Singh P et al (2020) Compressive deformation behavior of Al–SiC–MWCNTs hybrid composite foam through factorial design of experiments. Trans Indian Inst Met 73:223–234. https://doi.org/10.1007/s12666-019-01825-7
dc.relationYang C-H, Su C-S (2020) Investigation of process parameters by using a two-level factorial design for microparticle production of ipriflavone through rapid expansion of supercritical solution process. J Cryst Growth 552:125921. https://doi.org/10.1016/j.jcrysgro.2020.125921
dc.relationYu W-L, Wu S-J, Shiah S-W (2008) Parametric analysis of the proton exchange membrane fuel cell performance using design of experiments. Int J Hydrogen Energy 33:2311–2322. https://doi.org/10.1016/j.ijhydene.2008.02.040
dc.relationZahraee SM, Milad H, Noordin MY et al (2013) Combined use of design of experiment and computer simulation for resources level determination in concrete pouring process. J Teknol Sci Eng 64:43–49. https://doi.org/10.11113/jt.v64.1315
dc.relationZahraee SM, Khademi A, Khademi S et al (2014) Application of design experiments to evaluate the effectiveness of climate factors on energy saving in green residential buildings. J Teknol Sci Eng 69:107–111. https://doi.org/10.11113/jt.v69.3215
dc.relationZahraee SM, Rohani JM, Wong KY (2018) Application of computer simulation experiment and response surface methodology for productivity improvement in a continuous production line: case study. J King Saud Univ Eng Sci 30:207–217. https://doi.org/10.1016/j.jksues.2018.04.003
dc.relationZangeneh A, Peyghambarzadeh SM, Bayat A, Vatani A (2020) Application of general multilevel factorial design approach in forced convection and subcooled flow boiling heat transfer to CuO/water nanofluids. J Mol Liq 313:113502. https://doi.org/10.1016/j.molliq.2020.113502
dc.relationZetland D (2021) The role of prices in managing water scarcity. Water Sec 12:100081. https://doi.org/10.1016/j.wasec.2020.100081
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceIranian Journal of Science and Technology, Transactions of Civil Engineering
dc.sourcehttps://link.springer.com/article/10.1007/s40996-021-00682-z
dc.subjectWater metering
dc.subjectDesign of experiments
dc.subjectPressure drop
dc.subjectValve diameter
dc.subjectSpring
dc.titleFactors and interactions that influence the pressure drop across an air volume reducing device on low-pressure water distribution networks
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución