dc.creator | amelec, viloria | |
dc.creator | Senior Naveda, Alexa | |
dc.creator | Angulo Palma, Hugo Javier | |
dc.creator | Niebles Núñez, William | |
dc.creator | Niebles Nuñez, Leonardo David | |
dc.date | 2020-12-19T23:12:44Z | |
dc.date | 2020-12-19T23:12:44Z | |
dc.date | 2020 | |
dc.date.accessioned | 2023-10-03T19:49:12Z | |
dc.date.available | 2023-10-03T19:49:12Z | |
dc.identifier | 1742-6588 | |
dc.identifier | 1742-6596 | |
dc.identifier | https://hdl.handle.net/11323/7616 | |
dc.identifier | doi:10.1088/1742-6596/1432/1/012106 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9172339 | |
dc.description | In higher education, student dropout is a relevant problem, not just in Latin America but also in developed countries. Although there is no consensus to measure the education quality, one of the important indicators of university success is the time to graduation (TTG), which is directly related to student dropout [1]. Global estimates put this dropout rate at 42% [2]. In the United States, this rate is around 30% and represents a loss of 9 billion dollars in the education of these students [3]. However, desertion not only affects the quality of education and the economy of a country, but also has effects on the development of society, since society demands the contributions derived from the population with higher education such as: innovation, knowledge production and scientific discovery [4]. Using basic statistical learning techniques, this paper presents a simple way to predict possible dropouts based on their demographic and academic characteristics. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | [1] Pineda Lezama, O., & Gómez Dorta, R. (2017). Techniques of multivariate statistical analysis:
An application for the Honduran banking sector. Innovare: Journal of Science and Technology, 5
(2), 61-75 | |
dc.relation | [2] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J.
(2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the
Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y.,
Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol
10943. Springer, Cham | |
dc.relation | [3] Badr, G.; Algobail, A.; Almutairi, H.; Almutery, M.: Predicting Students’ Performance in
University Courses: A Case Study and Tool in KSU Mathematics Department. Procedia
Computer Science, Vol. 82, pp. 80-89 (2016) | |
dc.relation | [4] Hutt, S.; Gardener, M.; Kamentz, D.; Duckworth, A.; D'Mello, S.: Prospectively Predicting 4-
year College Graduation from Student Applications. Proceedings of the 8th International
Conference on Learning Analytics and Knowledge, pp. 280-289 (2018) | |
dc.relation | [5] Ahuja, R.; Kankane, Y.: Predicting the probability of student's degree completion by using
different data mining techniques. Fourth International Conference on Image Information
Processing (ICIIP), pp. 1
Retracted -4 (2017) | |
dc.relation | [6] Martins, L.; Carvalho, R.; Victorino, C.; Holanda, M.: Early Prediction of College Attrition Using
Data Mining. 16th IEEE International Conference on Machine Learning and Applications
(ICMLA), pp. 1075-1078 (2017) | |
dc.relation | [7] James, G.; Witten, D.; Hastie, T.; Tibshirani, R.: An Introduction to Statistical Learning. Springer
7th Ed, pp. 25 (2014) | |
dc.relation | [8] Russell, S.; Norvig, P.: Artificial Intelligence A Modern Approach. Pearson Education 3rd Ed,
pp. 705 (2010) | |
dc.relation | [9] Makhabel, B.: Learning Data Mining with R. Packt Publishing 1st Ed, pp. 143 (2015) | |
dc.relation | [10] Witten, I.; Frank, E.; Hall, M.; Pal, C.: Data Mining Practical Machine Learning Tools and
Techniques. Elsevier 4th Ed, pp. 167-169 (2016). | |
dc.relation | [11] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. (2018,
June). Factor analysis of the psychosocial risk assessment instrument. In International Conference
on Data Mining and Big Data (pp. 149-158). Springer, Cham. | |
dc.relation | [12] Gaitán-Angulo, M., Viloria, A., & Abril, J. E. S. (2018, June). Hierarchical Ascending
Classification: An Application to Contraband Apprehensions in Colombia (2015–2016). In Data
Mining and Big Data: Third International Conference, DMBD 2018, Shanghai, China, June 17–
22, 2018, Proceedings (Vol. 10943, p. 168). Springer. | |
dc.relation | [13] Viloria, A., & Lezama, O. B. P. (2019). An intelligent approach for the design and development
of a personalized system of knowledge representation. Procedia Computer Science , 151 , 1225-
1230. | |
dc.relation | [14] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J.
(2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the
Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y.,
Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol
10943. Springer, Cham | |
dc.relation | [15] Viloria, A., Bucci, N., Luna, M., Lis-Gutiérrez, J. P., Parody, A., Bent, D. E. S., & López, L. A.
B. (2018, June). Determination of dimensionality of the psychosocial risk assessment of internal,
individual, double presence and external factors in work environments. In International
Conference on Data Mining and Big Data (pp. 304-313). Springer, Cham. | |
dc.relation | [16] Demsar, J., Curk, T., Erjavec, A., Gorup C, Hocevar, T., Milutinovic, M., Mozina, M., Polajnar,
M., Toplak, M., Staric, A., Stajdohar, M., Umek, L., Zagar, L., Zbontar, J., Zitnik, M., Zupan, B.:
Orange: Data Mining Toolbox in Python. Journal of Machine Learning Research
14(Aug):2349−2353 (2013). | |
dc.relation | [17] Pretnar, A. The Mystery of Test & Score. Ljubljana: University of Ljubljana. Retrieved from:
https://orange.biolab.si/blog/2019/1/28/the-mystery-of-test-and-score/ (2019). | |
dc.relation | [18] Demšar, J., & Zupan, B. Orange: Data mining fruitful and fun-a historical perspective.
Informatica, 37(1), 55-60. (2013). | |
dc.relation | [19] Yasser, A. M., Clawson, K., & Bowerman, C.: Saving cultural heritage with digital make-believe:
machine learning and digital techniques to the rescue. In Proceedings of the 31st British Computer
Society Human Computer Interaction Conference (p. 97). BCS Learning & Development Ltd.
(2017).
R | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Journal of Physics: Conference Series | |
dc.source | https://iopscience.iop.org/article/10.1088/1742-6596/1432/1/012077 | |
dc.subject | Big Data | |
dc.subject | Higher education | |
dc.subject | Dropouts | |
dc.title | Retraction: using Big Data to determine potential dropouts in higher education | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |