Expansión de un sistema de transmisión mediante LOPF-AC
Expansion of a transmission system using LOPF-AC
dc.creator | Escudero Delgado, Pablo | |
dc.creator | Carrión Galarza, Diego | |
dc.date | 2019-02-11T23:06:37Z | |
dc.date | 2019-02-11T23:06:37Z | |
dc.date | 2018-12-18 | |
dc.date.accessioned | 2023-10-03T19:48:50Z | |
dc.date.available | 2023-10-03T19:48:50Z | |
dc.identifier | P. Escudero-Delgado y D. Carrión-Galarza, “Expansión de un sistema de transmisión mediante LOPF-AC,” INGE CUC, vol. 14, no. 2, pp.116-125, 2018. DOI: http://doi.org/10.17981/ingecuc.14.2.2018.11 | |
dc.identifier | http://hdl.handle.net/11323/2391 | |
dc.identifier | https://doi.org/10.17981/ingecuc.14.2.2018.11 | |
dc.identifier | 10.17981/ingecuc.14.2.2018.11 | |
dc.identifier | 2382-4700 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | 0122-6517 | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9172288 | |
dc.description | Introducción: En la presente investigación se transforma las ecuaciones que conforman un OPF-AC a un sistema de restricciones lineales mediante series de Taylor, por lo cual se adquiere un modelo LOPF-AC, preciso y aplicable para poder garantizar la minimización de pérdidas en todo el sistema. Objetivo: Minimizar las pérdidas en la expansión del sistema de transmisión. Metodología: Se basa en linealizar las ecuaciones del OPF-AC mediante Series de Taylor, para obtener un problema linealizado. Resultados: El modelo determina cuales son las líneas que se deberían implementar y cuales se deberían reforzar, considerando el menor costo y la minimización de las pérdidas. Conclusiones: La demanda total de la red más la proyección de carga de los distintos casos para la expansión del sistema de transmisión es abastecida con normalidad, cumpliendo con los parámetros establecidos de generación y transmisión conjuntamente con las restricciones del algoritmo para obtener un desempeño óptimo en la TEP. | |
dc.description | Introduction− In this document we transform the OPF-AC equations into a system of linear constraints using Taylor series, for which a LOPF-AC model is acquired, accurate and applicable to guarantee the minimization of losses in the whole system.Objective−To minimize the electrical losses in the ex-pansion of the transmission system.Methodology−It is based on linearizing OPF-AC equa-tions by Taylor series, to obtain a linear problem.Results− The model determines which lines should be implemented and which ones should be reinforced, con-sidering the lower cost and the minimization of losses.Conclusions−The total demand of the network plus the loading projection of the different cases for the ex-pansion of the transmission system is supplied normally, complying with the established parameters of generation and transmission together with the constraints of the algorithm to obtain an optimal performance in the TEP. | |
dc.format | 10 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | INGE CUC; Vol. 14, Núm. 2 (2018) | |
dc.relation | INGE CUC | |
dc.relation | INGE CUC | |
dc.relation | S. S. Taheri, J. Kazempour and S. Seyedshenava, “Transmission expansion in an oligopoly considering generation investment equilibrium,” Energy Econ., vol. 64, pp. 55–62, 2017. https://doi.org/10.1016/j.eneco.2017.03.003 | |
dc.relation | T. Akbari, A. Rahimi-kian and M. Heidarizadeh, “Security-Constrained Transmission Expansion Planning : A Multi-Objective Approach,” lectrical Eng. (ICEE), 2011 19th Iran. Conf., p. 6, 2011. | |
dc.relation | D . Sainju, R. Sinha and B. R. Pokhrel, “Static Expansion Planning of Transmission Line Using Mixed Integer Linear Programming Method,” in Power Systems (ICPS), 2016 IEEE 6th International Conference on, 2016, pp. 1–6. https://doi.org/10.1109/ICPES.2016.7584141 | |
dc.relation | P. V. Escudero and D. F. Carrión, “Modelo de Expansión de un sistema de transmisión basado en linealización de flujos de potencia óptimos AC.,” p. 34, 2018. | |
dc.relation | D . Carrión, E. Inga, J. W. Gonzalez and R. Hincapié, “Optimal Geographical Placement of Phasor Measurement Units based on Clustering Techniques,” in 51st International Universities’ Power Engineering Conference, 2016, p. 6. https://doi.org/10.1109/UPEC.2016.8114003 | |
dc.relation | W. H. Caisapanta and D. F. Carrión, “Expansión de sistemas de transmisión eléctrica usando criterios de óptima potencia AC,” 2016. | |
dc.relation | D. Carrión, J. W. González, I. A. Isaac and G. J. López, “Optimal Fault Location in Transmission Lines Using Hybrid Method,” in 2017 IEEE PES Innovative Smart Grid Technologies Conference, 2017, p. 6. https://doi.org/10.1109/ISGT-LA.2017.8126757 | |
dc.relation | G. Yaguana and D. Carrión, “Optimización de la expansión de los sistemas de transmisión usando gams.pdf.” Quito, p. 21, 2016. | |
dc.relation | R. Hemmati, R.-A. Hooshmand and A. Khodabakhshian, “Comprehensive review of generation and transmission expansion planning,” IET Gener. Transm. Distrib., vol. 7, no. 9, pp. 955–964, Sep. 2013. https://doi.org/10.1049/iet-gtd.2013.0031 | |
dc.relation | A. K. Ferdavani, M. Salem, I. Alhamrouni and A. Khairuddin, “Transmission expansion planning using AC-based differential evolution algorithm,” IET Gener.Transm. Distrib., vol. 8, no. 10, pp. 1637–1644, Oct. 2014. https://doi.org/10.1049/iet-gtd.2014.0001 | |
dc.relation | G. Latorre, R. Dario Cruz, J. M. Areiza and A. Villegas, “Classification of publications and models on transmission expansion planning,” IEEE Trans. Power Syst., vol. 18, no. 2, pp. 938–946, 2003. https://doi.org/10.1109/TPWRS.2003.811168 | |
dc.relation | T. Akbari, A. Rahimi-Kian and M. Tavakoli Bina, “Security- constrained transmission expansion planning: A stochastic multi-objective approach,” Int. J. Electr.Power Energy Syst., vol. 43, no. 1, pp. 444–453, 2012. https://doi.org/10.1016/j.ijepes.2012.05.058 | |
dc.relation | J. Marecek, M. Mevissen and J. C. Villumsen, “MINLP in transmission expansion planning,” in Power Systems Computation Conference (PSCC), 2016, pp. 1–8. https://doi.org/10.1109/PSCC.2016.7540906 | |
dc.relation | A. Capasso, A. Cervone, R. Lamedica and L. Palagi, “A LP and MILP methodology to support the planning of transmission power systems,” Electr. Power Syst. Res., vol. 140, pp. 699–707, 2016. https://doi.org/10.1016/j.epsr.2016.04.024 | |
dc.relation | M. Jadidoleslam, A. Ebrahimi and M. A. Latify, “Probabilistic transmission expansion planning to maximize the integration of wind power,” Renew. Energy, vol. 114, pp. 866–878, 2017. https://doi.org/10.1016/j.renene.2017.07.063 | |
dc.relation | D . Carrión, E. Inga, J. W. Gonzalez, and R. Hincapié, “Optimal Geographical Placement of Phasor Measurement Units based on Clustering Techniques,” in 2016 51st International Universities Power Engineering Conference, 2016, pp. 6–11. https://doi.org/10.1109/UPEC.2016.8114003 | |
dc.relation | L. Garver, “Transmission Network Estimation Using Linear Programming,” IEEE Trans. Power Appar. Syst., vol. PAS-89, no. 7, pp. 1688–1697, 1970. https://doi.org/10.1109/TPAS.1970.292825 | |
dc.relation | H. Zhang, V. Vittal, G. T. Heydt and J. Quintero, “A relaxed AC optimal power flow model based on a Taylor series,” 2013 IEEE Innov. Smart Grid Technol. (ISGT Asia), pp. 1–5, 2013. | |
dc.relation | D. Carrion, J. W. Gonzalez, I. A. Isaac, G. J. Lopez and H. A. Cardona, “Load Characterization Based on Voltage and Current Phasorial Measurements in Micro-Grids,” 2017 Int. Conf. Inf. Syst. Comput. Sci., pp. 1–6, 2017. https://doi.org/10.1109/INCISCOS.2017.23 | |
dc.relation | D . Z. Fitiwi, L. Olmos, M. Rivier, F. de Cuadra and I. J. Pérez-Arriaga, “Finding a representative network losses model for large-scale transmission expansión planning with renewable energy sources,” Energy, vol. 101, pp. 343–358, 2016. https://doi.org/10.1016/j.energy.2016.02.015 | |
dc.relation | S. de la Torre, A. J. Conejo and J. Contreras, “Transmission expansion planning in electricity markets,” IEEE Trans. Power Syst., vol. 23, no. 1, pp. 238–248, 2008. https://doi.org/10.1109/TPWRS.2007.913717 | |
dc.relation | C. A. Sima, G. C. Lazaroiu and V. Dumbrava, “Transmission expansion planning optimization for improving RES integration on electricity market,” in 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 2017, pp. 855–859. https://doi.org/10.1109/ATEE.2017.7905085 | |
dc.relation | M. Tavakoli Bina and T. Akbari, “Approximated MILP model for AC transmission expansion planning: global solutions versus local solutions,” IET Gener. Transm. Distrib., vol. 10, no. 7, pp. 1563–1569, 2016. https://doi.org/10.1049/iet-gtd.2015.0723 | |
dc.relation | L. P. Garcés, A. J. Conejo, R. García-Bertrand and R. Romero, “A bilevel approach to transmission expansión planning within a market environment,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1513–1522, 2009. https://doi.org/10.1109/TPWRS.2009.2021230 | |
dc.relation | G. Srinivasulu, “Multi- Objective Transmission Expansion Planning for IEEE 24 Bus RTS,” pp. 144–149, 2015. https://doi.org/10.1109/PCCCTSG.2015.7503895 | |
dc.relation | T. Akbari and M. Tavakoli Bina, “A linearized formulation of AC multi-year transmission expansion planning: A mixed-integer linear programming approach,” Electr. Power Syst. Res., vol. 114, pp. 93–100, Sep. 2014. https://doi.org/10.1016/j.epsr.2014.04.013 | |
dc.relation | M. Olofsson, G. Andersson and L. Soder, “Linear programming based optimal power flow using second order sensitivities,” IEEE Trans. Power Syst., vol. 10, no. 3, pp. 1691–1697, 1995. https://doi.org/10.1109/59.466472 | |
dc.relation | H. Zhang, V. Vittal, G. T. Heydt and J. Quintero, “A Mixed-Integer Linear Programming Approach for Multi-Stage Security-Constrained Transmission Expansion Planning,” Power Syst. IEEE Trans., vol. 27, no. 2, pp. 1125–1133, 2012. https://doi.org/10.1109/TPWRS.2011.2178000 | |
dc.relation | A. Lotfjou, Y. Fu and M. Shahidehpour, “Hybrid AC/DC Transmission Expansion Planning,” IEEE Trans. Power Deliv., vol. 27, no. 3, pp. 1620–1628, Jul. 2012. https://doi.org/10.1109/TPWRD.2012.2194515 | |
dc.relation | N. Alguacil, A. L. Motto, and A. J. Conejo, “Transmission expansion planning: A mixed-integer LP approach,” IEEE Trans. Power Syst., vol. 18, no. 3, pp. 1070–1077, 2003. https://doi.org/10.1109/TPWRS.2003.814891 | |
dc.relation | 125 | |
dc.relation | 116 | |
dc.relation | 2 | |
dc.relation | 14 | |
dc.relation | INGE CUC | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | INGE CUC | |
dc.source | https://revistascientificas.cuc.edu.co/ingecuc/article/view/1835 | |
dc.subject | Flujos óptimos de potencia | |
dc.subject | Linealización | |
dc.subject | Minimización de pérdidas | |
dc.subject | Planificación de la expansión de la transmisión | |
dc.subject | Sistemas eléctricos de potencia | |
dc.subject | Electrical power system | |
dc.subject | Linearization | |
dc.subject | Optimal power flow | |
dc.subject | Transmission expansion planning | |
dc.title | Expansión de un sistema de transmisión mediante LOPF-AC | |
dc.title | Expansion of a transmission system using LOPF-AC | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa |