dc.creatorSilva, Jesús
dc.creatorZilberman, Jack
dc.creatorBravo Núñez, Narledis
dc.creatorVarela Izquierdo, Noel
dc.creatorPineda, Omar
dc.date2020-11-12T21:10:53Z
dc.date2020-11-12T21:10:53Z
dc.date2020
dc.date2021-06-19
dc.date.accessioned2023-10-03T19:48:43Z
dc.date.available2023-10-03T19:48:43Z
dc.identifier2194-5357
dc.identifierhttps://hdl.handle.net/11323/7292
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172265
dc.descriptionWorld Health Organization (WHO) classifies brain tumors by their level of aggressiveness into four grades depending on their aggressiveness or malignancy as I to IV respectively [1]. From this classification of primary brain tumors, the four categories can be considered in two groups: Low Grade (LG) and High Grade (HG), in which the LG group is composed of grade I and II brain tumors, while the HG group is composed of grades III and IV brain tumors [2]. This paper focuses on the morphometric analysis of brain tumors and the study of the correlation of tumor shape with its degree of malignancy.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relationSaba, T., Mohamed, A.S., El-Affendi, M., Amin, J., Sharif, M.: Brain tumor detection using fusion of hand crafted and deep learning features. Cogn. Syst. Res. 59, 221–230 (2020)
dc.relationBlanchet, L., Krooshof, P., Postma, G., Idema, A., Goraj, B., Heerschap, A., Buydens, L.: Discrimination between metastasis and glioblastoma multiforme based on morphometric analysis of MR images. Am. J. Neuroradiol. 32(1), 67–73 (2011). http://www.ajnr.org/content/early/2010/11/04/ajnr.A2269
dc.relationGamero, W.M., Agudelo-Castañeda, D., Ramirez, M.C., Hernandez, M.M., Mendoza, H.P., Parody, A., Viloria, A.: Hospital admission and risk assessment associated to exposure of fungal bioaerosols at a municipal landfill using statistical models. In: International Conference on Intelligent Data Engineering and Automated Learning, pp. 210–218. Springer, Cham, November 2018
dc.relationÖzyurt, F., Sert, E., Avcı, D.: An expert system for brain tumor detection: fuzzy C-means with super resolution and convolutional neural network with extreme learning machine. Med. Hypotheses 134, 109433 (2020)
dc.relationWu, Q., Wu, L., Wang, Y., Zhu, Z., Song, Y., Tan, Y., Wang, X.F., Li, J., Kang, D., Yang, C.J.: Evolution of DNA aptamers for malignant brain tumor gliosarcoma cell recognition and clinical tissue imaging. Biosens. Bioelectron. 80, 1–8 (2016)
dc.relationKharrat, A., Mahmoud, N.E.J.I.: Feature selection based on hybrid optimization for magnetic resonance imaging brain tumor classification and segmentation. Appl. Med. Inf. 41(1), 9–23 (2019)
dc.relationSharif, M., Amin, J., Raza, M., Yasmin, M., Satapathy, S.C.: An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recogn. Lett. 129, 150–157 (2020)
dc.relationChang, H., Borowsky, A., Spellman, P., Parvin, B.: Classification of tumor histology via morphometric context. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2203–2210, June 2013
dc.relationMoitra, D., Mandal, R.: Review of brain tumor detection using pattern recognition techniques. Int. J. Comput. Sci. Eng. 5(2), 121–123 (2017)
dc.relationEinenkel, J., Braumann, U.D., Horn, L.C., Pannicke, N., Kuska, J.P., Schhütz, A., Hentschel, B., Hockel, M.: Evaluation of the invasion front pattern of squamous cell cervical carcinoma by measuring classical and discrete compactness. Comput. Med. Imaging Graph 31, 428–435 (2007)
dc.relationGomathi, P., Baskar, S., Shakeel, M.P., Dhulipala, S.V.: Numerical function optimization in brain tumor regions using reconfigured multi-objective bat optimization algorithm. J. Med. Imaging Health Inf. 9(3), 482–489 (2019)
dc.relationChen, S., Ding, C., Liu, M.: Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recogn. 88, 90–100 (2019)
dc.relationKistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013). http://www.jmir.org/2013/11/e245/
dc.relationAmin, J., Sharif, M., Gul, N., Yasmin, M., Shad, S.A.: Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network. Pattern Recogn. Lett. 129, 115–122 (2020)
dc.relationKim, B., Tabori, U., Hawkins, C.: An update on the CNS manifestations of brain tumor polyposis syndromes. Acta Neuropathol. 139, 703–715 (2020). https://ezproxy.cuc.edu.co:2067/10.1007/s00401-020-02124-y
dc.relationViloria, A., Bucci, N., Luna, M., Lis-Gutiérrez, J.P., Parody, A., Bent, D.E.S., López, L.A.B.: Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In: International Conference on Data Mining and Big Data, pp. 304–313. Springer, Cham, June 2018
dc.relationThivya Roopini, I., Vasanthi, M., Rajinikanth, V., Rekha, M., Sangeetha, M.: Segmentation of tumor from brain MRI using fuzzy entropy and distance regularised level set. In: Nandi, A.K., Sujatha, N., Menaka, R., Alex, J.S.R. (eds.) Computational Signal Processing and Analysis, pp. 297–304. Springer, Singapore (2018)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.sourceAdvances in Intelligent Systems and Computing
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089719105&doi=10.1007%2f978-3-030-53036-5_9&partnerID=40&md5=929a44084e2e0a2112ec8c63c31239a9
dc.subjectBrain tumor
dc.subjectDegree of malignancy
dc.subjectMorphometric characteristics
dc.subjectRecognition
dc.titleMorphometric characteristics in discrete domain for brain tumor recognition
dc.typePre-Publicación
dc.typehttp://purl.org/coar/resource_type/c_816b
dc.typeText
dc.typeinfo:eu-repo/semantics/preprint
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/redcol/resource_type/ARTOTR
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución