dc.creatorRosas, E.
dc.creatorCarpintero, C.
dc.creatorRajesh, N.
dc.creatorShanthi, S.
dc.date2019-09-13T19:06:25Z
dc.date2019-09-13T19:06:25Z
dc.date2019-10
dc.date.accessioned2023-10-03T19:48:09Z
dc.date.available2023-10-03T19:48:09Z
dc.identifierhttp://hdl.handle.net/11323/5265
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172164
dc.descriptionIn this paper, we introduce and study basic characterizations, several properties of upper (lower) nearly (i; j)-!-continuous multifunctions on bitopological space.
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de la Costa
dc.relation[1] S. Acharjee, B. C. Tripathy, p-j-generator and pI-j-generatorin bitopology; Boletim da Sociedade Paranaense de Matematica, 36 No 2 (2018),17-31. [2] K. Al-Zoubi and B. Al-Nashef, The topology of !-open subsets, Al-Manarah 9 (2003), 169-179. [3] K. Al-Zoubi, On generalized !-closed sets, Int. J. Math. Math. Sci. 13 (2005), 2011-2021. [4] A. Al-Omari and M. S. M. Noorani, Contra-!-continuous and almost !-continuous functions, Int. J. Math. Math. Sci. 9, (2007), 169-179. doi:10.1155/2007/40469. [5] A. Al-Omari, T. Noiri and M. S. M. Noorani, Weak and strong forms of !-continuous functions, Int. J. Math. Math. Sci. 9, (2009), 1-13. doi:10.1155/2009/174042. [6] C. Carpintero, J. Pacheco, N. Rajesh and E. Rosas, Properties of nearly !-continuous multifunctions, Acta Univ. Sapientiae, Mathematic, 9, No. 1 (2017),13-25. doi: 10.1515/ausm-2017-0002. [7] E. Ekici, S. Jafari and S.P. Moshokoa, On a weak form of !-continuity, Annals Univ. Craiova, Math. Comp. Sci. 37. No 2 (2010), 38-46. [8] H.Z. Hdeib, !-closed mappings, Revista Colombiana Mat., 16 (1982),65-78. [9] H.Z. Hdeib, !-continuous functions, Dirasat, 16. No. 2 (1989),136-142. [10] A. Richlewicz, On almost nearly continuity with reference to multifunctions in bitopological spaces, Novi Sad J. Math., 38, No. 2 (2008), 5-14. [11] B. C. Tripathy and D. J. Sarma, On b-locally open sets in bitopological spaces, Kyungpook Math. Journal, 51, No. 4 (2011),429-433. [12] B. C. Tripathy and D. J. Sarma, On weakly b-continuous functions in bitopo- logical spaces, Acta Scientiarum Technology, 35, No. 3 (2013),521-525. [13] B. C. Tripathy and S. Acharjee, On ( ; )-Bitopological semi-closed set via topological ideal, Proyecciones J. Math., 33, No. 3 (2014),245-257. [14] B. C. Tripathy and D. J. Sarma, Generalized b-closed sets in ideal bitopological spaces, Proyecciones J. Math., 33, No. 3 (2014),315-324. [15] D. J. Sarma and B. C. Tripathy, Pairwise generalized b-R0-spaces in bitopo- logical spaces, Proyecciones J. Math., 36, No. 4 (2017),589-600. [16] B. C. Tripathy and S. Debnath, Fuzzy m-structures, m-open multifunctions and bitopological spaces, Boletim da Sociedade Paranaense de Matematica, 37, No. 4 (2019),119-128.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectBitopological spaces
dc.subjectMultifunction
dc.subjectProperties of upper
dc.titleNear ω-continuous multifunctions on bitopological spaces
dc.typePre-Publicación
dc.typehttp://purl.org/coar/resource_type/c_816b
dc.typeText
dc.typeinfo:eu-repo/semantics/preprint
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/redcol/resource_type/ARTOTR
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución