dc.creatorDe Falco, Anna
dc.creatorSANTA-HELENA, EDUARDA
dc.creatorT. Toloza, Carlos A.
dc.creatorAlmeida, Joseany
dc.creatorLarrude, Dunieskys G.
dc.creatorPereira Meirelles, Fatima Ventura
dc.creatorGioda, Carolina
dc.creatorAucelio, Ricardo Q.
dc.creatorGioda, Adriana
dc.date2023-02-24T13:57:10Z
dc.date2023
dc.date2023-02-24T13:57:10Z
dc.date2022
dc.date.accessioned2023-10-03T19:48:08Z
dc.date.available2023-10-03T19:48:08Z
dc.identifierAnna De Falco, Eduarda Santa-Helena, Carlos A. T. Toloza, Joseany M. S. Almeida, Dunieskys G. Larrude, Fatima Ventura Pereira Meirelles, Carolina Rosa Gioda, Ricardo Q. Aucelio & Adriana Gioda (2022) Luminescence imaging and toxicity assessment of graphene quantum dots using in vitro models, Fullerenes, Nanotubes and Carbon Nanostructures, 30:6, 657-666, DOI: 10.1080/1536383X.2021.1995367
dc.identifier1536-383X
dc.identifierhttps://hdl.handle.net/11323/9925
dc.identifier10.1080/1536383X.2021.1995367
dc.identifier1536-4046
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172162
dc.descriptionGraphene quantum dots (GQDs) have been of high interest due to their size and optical characteristics, which improves when functional groups are added to their borders and defects. In this work, the in vitro toxicity of aqueous dispersion of GQDs (w/wo amino-functionalization) was investigated in two different cellular models (S. cerevisiae and H9c2 cell line). Results in yeast suggest that when at up to 25 % volume concentration, the effect of all tested GQDs was only inhibitory, and, in both cellular models, the toxic effect is rigorously dose-dependent. The comparison of IC50 values of all the tested GQDs reveals no significant variations among them, pointing to non-carbonized citric acid as the more toxic precursor. The obtained data suggest that functionalization makes GQDs less toxic, being the one functionalized with thioacetamide slightly more toxic, followed by the ones functionalized with thiourea and glutathione, respectively. Results confirm that their toxicity is characteristics as a whole, and not as the sum of the toxicity of the precursors. In both models, concentrations up to 2 % showed no significant toxicity. Finally, fluorescence microscopy images suggest that GQDs interact with the cellular membrane and enter in the cell, manifesting fluorescent properties.
dc.format11 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherTaylor and Francis Ltd.
dc.publisherUnited States
dc.relationFullerenes Nanotubes and Carbon Nanostructures
dc.relation[1] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S.; V; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004, 306, 666–669. DOI: 10.1126/science.1102896.
dc.relation[2] Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. DOI: 10.1038/nmat1849.
dc.relation[3] Ponomarenko, L.; Schedin, F.; Katsnelson, M.; Yang, R.; Hill, E.; Novoselov, K.; Geim, A. Chaotic Dirac Billiard in Graphene Quantum Dots. Science 2008, 320, 356–358. DOI: 10.1126/science.1154663.
dc.relation[4] Shen, J.; Zhu, Y.; Chen, C.; Yang, X.; Li, C. Facile Preparation and Upconversion Luminescence of Graphene Quantum Dots. Chem Commun (Camb). 2011, 47, 2580–2582. DOI: 10.1039/c0cc04812g.
dc.relation[5] Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J. Focusing on Luminescent Graphene Quantum Dots: Current Status and Future Perspectives. Nanoscale. 2013, 5, 4015–4039. DOI: 10.1039/c3nr33849e.
dc.relation[6] Samra, K. S.; Manpreet.; Singh, A. Facile Synthesis of Graphene Quantum Dots and Their Optical Characterization. Fulleren Nanotube Carbon Nanostruct. 2021, 29, 638–642. DOI: 10.1080/1536383X.2021.1878152.
dc.relation[7] Guo, Z.; Cai, B.; Cao, Q.; Su, Y.; Li, M.; Hu, J.; Yang, Z.; Zhang, Y. Facile Synthesis of Amine-Functionalized Graphene Quantum Dots with Highly PH-Sensitive Photoluminescence. Fulleren Nanotube Carbon Nanostruct. 2017, 25, 704–709. DOI: 10.1080/1536383X.2017.1381952.
dc.relation[8] Chen, N.; He, Y.; Su, Y.; Li, X.; Huang, Q.; Wang, H.; Zhang, X.; Tai, R.; Fan, C. The Cytotoxicity of Cadmium-Based Quantum Dots. Biomaterials. 2012, 33, 1238–1244. DOI: 10.1016/j.biomaterials.2011.10.070.
dc.relation[9] Migita, S.; Moquin, A.; Fujishiro, H.; Himeno, S.; Maysinger, D.; Winnik, F.; Taniguchi, A. Quantum Dots Induce Heat Shock-Related Cytotoxicity at Intracellular Environment. In Vitro Cell Dev. Biol. Anim. 2014, 50, 367–372. DOI: 10.1007/s11626-013-9693-2.
dc.relation[10] Wang, F.; Gu, Z.; Lei, W.; Wang, W.; Xia, X.; Hao, Q. Graphene Quantum Dots as a Fluorescent Sensing Platform for Highly Efficient Detection of Copper(II) Ions. Sens. Actuators B. 2014, 190, 516–522. DOI: 10.1016/j.snb.2013.09.009.
dc.relation[11] Li, J.; Liu, F.; Shao, Q.; Min, Y.; Costa, M.; Yeow, E.; Xing, B. Enzyme-Responsive Cell-Penetrating Peptide Conjugated Mesoporous Silica Quantum Dot Nanocarriers for Controlled Release of Nucleus-Targeted Drug Molecules and Real-Time Intracellular Fluorescence Imaging of Tumor Cells. Adv. Healthc. Mater. 2014, 3, 1230–1239. DOI: 10.1002/adhm.201300613.
dc.relation[12] Zhou, N.; Hao, Z.; Zhao, X.; Maharjan, S.; Zhu, S.; Song, Y.; Yang, B.; Lu, L. A Novel Fluorescent Retrograde Neural Tracer: Cholera Toxin B Conjugated Carbon Dots. Nanoscale. 2015, 7, 15635–15642. DOI: 10.1039/c5nr04361a.
dc.relation[13] Lu, H.; Li, W.; Dong, H.; Wei, M. Graphene Quantum Dots for Optical Bioimaging. Small (Weinheim an Der Bergstrasse, Germany) 2019, 15, 1902136. DOI: 10.1002/smll.201902136.
dc.relation[14] Luo, P.; Sahu, S.; Yang, S.; Sonkar, S.; Wang, J.; Wang, H.; LeCroy, G.; Cao, L.; Sun, Y. Carbon “Quantum” Dots for Optical bioimaging. J. Mater. Chem. B. 2013, 1, 2116–2127. DOI: 10.1039/c3tb00018d.
dc.relation[15] Pang, S. A PH Sensitive Fluorescent Carbon Dots for Urea and Urease Detection. Fulleren Nanotube Carbon Nanostruct. 2020, 28, 752–760. DOI: 10.1080/1536383X.2020.1759039.
dc.relation[16] Dong, Y.; Chen, C.; Zheng, X.; Gao, L.; Cui, Z.; Yang, H.; Guo, C.; Chi, Y.; Li, C. M. One-Step and High Yield Simultaneous Preparation of Single- and Multi-Layer Graphene Quantum Dots from CX-72 Carbon Black. J. Mater. Chem. 2012, 22, 8764–8766. DOI: 10.1039/c2jm30658a.
dc.relation[17] Fan, R. J.; Sun, Q.; Zhang, L.; Zhang, Y.; Lu, A. H. Photoluminescent Carbon Dots Directly Derived from Polyethylene Glycol and Their Application for Cellular Imaging. Carbon. 2014, 71, 87–93. DOI: 10.1016/j.carbon.2014.01.016.
dc.relation[18] Thakur, M.; Pandey, S.; Mewada, A.; Patil, V.; Khade, M.; Goshi, E.; Sharon, M. Antibiotic Conjugated Fluorescent Carbon Dots as a Theranostic Agent for Controlled Drug Release, Bioimaging, and Enhanced Antimicrobial Activity. J. Drug. Deliv. 2014, 2014, 282193–282199. DOI: 10.1155/2014/282193.
dc.relation[19] Wang, Y.; Anilkumar, P.; Cao, L.; Liu, J.; Luo, P.; Tackett, K.; Sahu, S.; Wang, P.; Wang, X.; Sun, Y. Carbon Dots of Different Composition and Surface Functionalization: Cytotoxicity Issues Relevant to Fluorescence Cell Imaging. Exp. Biol. Med. (Maywood). 2011, 236, 1231–1238. DOI: 10.1258/ebm.2011.011132.
dc.relation[20] Yang, S.; Wang, X.; Wang, H.; Lu, F.; Luo, P.; Cao, L.; Meziani, M.; Liu, J.; Liu, Y.; Chen, M.; et al. Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents. J. Phys. Chem. C Nanomater. Interfaces. 2009, 113, 18110–18114. DOI: 10.1021/jp9085969.
dc.relation[21] Ruan, S.; Qian, J.; Shen, S.; Zhu, J.; Jiang, X.; He, Q.; Gao, H. A Simple One-Step Method to Prepare Fluorescent Carbon Dots and Their Potential Application in Non-Invasive Glioma Imaging. Nanoscale. 2014, 6, 10040–10047. DOI: 10.1039/c4nr02657h.
dc.relation[22] Jin, X.; Sun, X.; Chen, G.; Ding, L.; Li, Y.; Liu, Z.; Wang, Z.; Pan, W.; Hu, C.; Wang, J. PH-Sensitive Carbon Dots for the Visualization of Regulation of Intracellular PH inside Living Pathogenic Fungal Cells. Carbon. 2015, 81, 388–395. DOI: 10. 1016/j.carbon.2014.09.071.
dc.relation[23] Bagheri, Z.; Ehtesabi, H.; Hallaji, Z.; Latifi, H.; Behroodi, E. Investigation the Cytotoxicity and Photo-Induced Toxicity of Carbon Dot on Yeast Cell. Ecotoxicol. Environ. Saf. 2018, 161, 245–250. DOI: 10.1016/j.ecoenv.2018.05.071.
dc.relation[24] Toloza, C. A. T.; Khan, S.; Silva, R. L. D.; Romani, E. C.; Larrude, D. G.; Louro, S. R. W.; Freire, F. L.; Aucelio, R. Q. Photoluminescence Suppression Effect Caused by Histamine on Amino-Functionalized Graphene Quantum Dots with the Mediation of Fe3þ, Cu2þ, Eu3þ: Application in the Analysis of Spoiled Tuna Fish. Microchem. J. 2017, 133C, 448–459. DOI: 10.1016/j.microc.2017.04.013.
dc.relation[25] Kasemets, K.; Suppi, S.; Kunnis-Beres, K.; Kahru, A. Toxicity of € CuO Nanoparticles to Yeast Saccharomyces Cerevisiae BY4741 Wild-Type and Its Nine Isogenic Single-Gene Deletion Mutants. Chem. Res. Toxicol. 2013, 26, 356–367. DOI: 10.1021/ tx300467d.
dc.relation[26] Trindade, G. S.; Capella, M. A. M.; Capella, L. S.; AffonsoMitidieri, O. R.; Rumjanek, V. M. Differences in Sensitivity to UVC, UVB and UVA Radiation of a Multidrug-Resistant Cell Line Overexpressing P-Glycoprotein. Photochem. Photobiol. 1999, 69, 694–699. DOI: 10.1111/j.1751-1097.1999.tb03348.x.
dc.relation[27] Fasbender, S.; Zimmermann, L.; Cadeddu, R.; Luysberg, M.; Moll, B.; Janiak, C.; Heinzel, T.; Haas, R. The Low Toxicity of Graphene Quantum Dots is Reflected by Marginal Gene Expression Changes of Primary Human Hematopoietic Stem Cells. Sci. Rep. 2019, 9, 1–13. DOI: 10.1038/s41598-019-48567-6.
dc.relation[28] Chang, Y.; Yang, S.; Liu, J.; Dong, E.; Wang, Y.; Cao, A.; Liu, Y.; Wang, H. In Vitro Toxicity Evaluation of Graphene Oxide on A549 Cells. Toxicol. Lett. 2011, 200, 201–210. DOI: 10.1016/j.toxlet.2010.11.016.
dc.relation[29] Stratford, M.; Nebe-von-Caron, G.; Steels, H.; Novodvorska, M.; Ueckert, J.; Archer, D. Weak-Acid Preservatives: PH and Proton Movements in the Yeast Saccharomyces Cerevisiae. Int. J. Food. Microbiol. 2013, 161, 164–171. DOI: 10.1016/j.ijfoodmicro.2012.12.013.
dc.relation[30] Nielsen, M.; Arneborg, N. The Effect of Citric Acid and PH on Growth and Metabolism of Anaerobic Saccharomyces Cerevisiae and Zygosaccharomyces Bailii Cultures. Food Microbiol. 2007, 24, 101–105. DOI: 10.1016/j.fm.2006.03.005.
dc.relation[31] Tabish, T.; Pranjol, M.; Karadag, I.; Horsell, D.; Whatmore, J.; Zhang, S. Influence of Luminescent Graphene Quantum Dots on Trypsin Activity. Int. J. Nanomedicine. 2018, 13, 1525–1538. DOI: 10.2147/IJN.S155021.
dc.relation[32] Lee, B.; Hasan, M.; Lichthardt, D.; Gonzalez-Rodriguez, R.; Naumov, A. Manganese-Nitrogen and Gadolinium-Nitrogen Co-Doped Graphene Quantum Dots as Bimodal Magnetic Resonance and Fluorescence Imaging Nanoprobes. Nanotechnol. 2021, 32, 095103. DOI: 10.1088/1361-6528/abc642.
dc.relation[33] Hadad, C.; Gonzalez-Domınguez, J. M.; Armelloni, S.; Mattinzoli, D.; Ikehata, M.; Istif, A.; Ostric, A.; Cellesi, F.; Alfieri, C. M.; Messa, P.; et al. Graphene Quantum Dots: From Efficient Preparation to Safe Renal Excretion. Nano Res. 2021, 14, 674–683. DOI: 10.1007/s12274-020-3096-y.
dc.relation[34] Toloza, C.; Almeida, J.; Khan, S.; Dos Santos, Y.; da Silva, A.; Romani, E.; Larrude, D.; Freire, F.; Aucelio, R. Gold Nanoparticles Coupled with Graphene Quantum Dots in Organized Medium to Quantify Aminoglycoside anti-Biotics in Yellow Fever Vaccine after Solid Phase Extraction Using a Selective Imprinted Polymer. J. Pharm. Biomed. Anal. 2018, 158, 480–493. DOI: 10.1016/j.jpba.2018.05.050.
dc.relation[35] Toloza, C. A. T.; Khan, S.; Silva, R. L. D.; Romani, E. C.; Freire, F. L.; Aucelio, R. Q. Different Approaches for Sensing Captopril Based on Functionalized Graphene Quantum Dots as Photoluminescent Probe. J. Lumin. 2016, 179, 83–92. DOI: 10. 1016/j.jlumin.2016.06.055.
dc.relation666
dc.relation657
dc.relation6
dc.relation30
dc.rightsCopyright © 2023 Informa UK Limited
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://www.tandfonline.com/doi/full/10.1080/1536383X.2021.1995367
dc.subjectGraphene quantum dots
dc.subjectCardiomyoblast
dc.subjectCytotoxicity
dc.subjectFluorescence imaging
dc.subjectYeast
dc.titleLuminescence imaging and toxicity assessment of graphene quantum dots using in vitro models
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución