dc.creator | Anupong, Wongchai | |
dc.creator | Muda, Iskandar | |
dc.creator | Auda AbdulAmeer, Sabah | |
dc.creator | Al-Kharsan, Ibrahim H. | |
dc.creator | Alviz Meza, Anibal | |
dc.creator | Cardenas Escorcia, Yulineth | |
dc.date | 2023-08-23T21:27:10Z | |
dc.date | 2023-08-23T21:27:10Z | |
dc.date | 2023-02-08 | |
dc.date.accessioned | 2023-10-03T19:47:37Z | |
dc.date.available | 2023-10-03T19:47:37Z | |
dc.identifier | Anupong, W.; Muda, I.; AbdulAmeer, S.A.; Al-Kharsan, I.H.; Alviz-Meza, A.; Cárdenas-Escrocia, Y. Energy Consumption and Carbon Dioxide Production Optimization in an Educational Building Using the Supported Vector Machine and Ant Colony System. Sustainability 2023, 15, 3118. https://doi.org/10.3390/ su15043118 | |
dc.identifier | https://hdl.handle.net/11323/10405 | |
dc.identifier | 10.3390/su15043118 | |
dc.identifier | 2071-1050 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9172104 | |
dc.description | Buildings account for sixty percent of the world’s total annual energy consumption; therefore, it is essential to find ways to reduce the amount of energy used in this sector. The road administration organization in Jakarta, Indonesia, utilized a questionnaire as well as the insights of industry experts to determine the most effective energy optimization parameters. It was decided to select variables such as the wall and ceiling materials, the number and type of windows, and the wall and ceiling insulation thickness. Several different modes were evaluated using the DesignBuilder software. Training the data with a supported vector machine (SVM) revealed the relationship between the inputs and the two critical outputs, namely the amount of energy consumption and CO2 production, and the ant colony algorithm was used for optimization. According to the findings, the ratio of the north and east windows to the wall in one direction is 70 percent, while the ratio of the south window to the wall in the same direction ranges from 35 to 50 percent. When the ratio and percentage of the west window to the west wall is between 60 and 70 percent, the amount of produced energy and CO2 is reduced to negligible levels. | |
dc.format | 14 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | MDPI AG | |
dc.publisher | Switzerland | |
dc.relation | Sustainability | |
dc.relation | 1. Molajou, A.; Afshar, A.; Khosravi, M.; Soleimanian, E.; Vahabzadeh, M.; Variani, H.A. A New Paradigm of Water, Food, and
Energy Nexus. Environ. Sci. Pollut. Res. 2021, 28, 1–11. [CrossRef] [PubMed] | |
dc.relation | 2. Molajou, A.; Pouladi, P.; Afshar, A. Incorporating Social System into Water-Food-Energy Nexus. Water Resour. Manag. 2021, 35,
4561–4580. [CrossRef] | |
dc.relation | 3. Ahmadi, M.H.; Sayyaadi, H.; Dehghani, S.; Hosseinzade, H. Designing a Solar Powered Stirling Heat Engine Based on Multiple
Criteria: Maximized Thermal Efficiency and Power. Energy Convers. Manag. 2013, 75, 282–291. [CrossRef] | |
dc.relation | 4. Al Doury, R.R.J.; Salem, T.K.; Nazzal, I.T.; Kumar, R.; Sadeghzadeh, M. A Novel Developed Method to Study the Energy/Exergy
Flows of Buildings Compared to the Traditional Method. J. Therm. Anal. Calorim. 2021, 145, 1151–1161. [CrossRef] | |
dc.relation | 5. Ahmadi, M.H.; Jashnani, H.; Chau, K.W.; Kumar, R.; Rosen, M.A. Carbon Dioxide Emissions Prediction of Five Middle Eastern
Countries Using Artificial Neural Networks. Energy Sources A Recovery Util. Environ. Eff. 2019, 41, 1–13. [CrossRef] | |
dc.relation | 6. Yavari, F.; Salehi Neyshabouri, S.A.; Yazdi, J.; Molajou, A.; Brysiewicz, A. A Novel Framework for Urban Flood Damage
Assessment. Water Resour. Manag. 2022, 36, 1991–2011. [CrossRef] | |
dc.relation | 7. Azizi, H.; Nejatian, N. Evaluation of the Climate Change Impact on the Intensity and Return Period for Drought Indices of SPI
and SPEI (Study Area: Varamin Plain). Water Supply 2022, 22, 4373–4386. [CrossRef] | |
dc.relation | 8. Banan-Dallalian, M.; Shokatian-Beiragh, M.; Golshani, A.; Abdi, A. Use of a Bayesian Network for Storm-Induced Flood Risk
Assessment and Effectiveness of Ecosystem-Based Risk Reduction Measures in Coastal Areas (Port of Sur, Sultanate of Oman).
Ocean Eng. 2023, 270, 113662. [CrossRef] | |
dc.relation | 9. Alayi, R.; Mohkam, M.; Seyednouri, S.R.; Ahmadi, M.H.; Sharifpur, M. Energy/Economic Analysis and Optimization of on-Grid
Photovoltaic System Using CPSO Algorithm. Sustainability 2021, 13, 12420. [CrossRef] | |
dc.relation | 10. Sedlmeir, J.; Buhl, H.U.; Fridgen, G.; Keller, R. The Energy Consumption of Blockchain Technology: Beyond Myth. Bus. Inf. Syst.
Eng. 2020, 62, 599–608. [CrossRef] | |
dc.relation | 11. Aruga, K.; Islam, M.M.; Jannat, A. Effects of COVID-19 on Indian Energy Consumption. Sustainability 2020, 12, 5616. [CrossRef] | |
dc.relation | 12. Ren, S.; Hao, Y.; Xu, L.; Wu, H.; Ba, N. Digitalization and Energy: How Does Internet Development Affect China’s Energy
Consumption? Energy Econ. 2021, 98, 105220. [CrossRef] | |
dc.relation | 13. Osobajo, O.A.; Otitoju, A.; Otitoju, M.A.; Oke, A. The Impact of Energy Consumption and Economic Growth on Carbon Dioxide
Emissions. Sustainability 2020, 12, 7965. [CrossRef] | |
dc.relation | 14. Olu-Ajayi, R.; Alaka, H.; Sulaimon, I.; Sunmola, F.; Ajayi, S. Building Energy Consumption Prediction for Residential Buildings
Using Deep Learning and Other Machine Learning Techniques. J. Build. Eng. 2022, 45, 103406. [CrossRef] | |
dc.relation | 15. Li, X.; Zhou, Y.; Yu, S.; Jia, G.; Li, H.; Li, W. Urban Heat Island Impacts on Building Energy Consumption: A Review of Approaches
and Findings. Energy 2019, 174, 407–419. [CrossRef] | |
dc.relation | 16. Robinson, C.; Dilkina, B.; Hubbs, J.; Zhang, W.; Guhathakurta, S.; Brown, M.A.; Pendyala, R.M. Machine Learning Approaches
for Estimating Commercial Building Energy Consumption. Appl. Energy 2017, 208, 889–904. [CrossRef] | |
dc.relation | 17. Bourdeau, M.; Zhai, X.Q.; Nefzaoui, E.; Guo, X.; Chatellier, P. Modeling and Forecasting Building Energy Consumption: A Review
of Data-Driven Techniques. Sustain. Cities Soc. 2019, 48, 101533. [CrossRef] | |
dc.relation | 18. Yuan, S.; Hu, Z.Z.; Lin, J.R.; Zhang, Y.Y. A Framework for the Automatic Integration and Diagnosis of Building Energy
Consumption Data. Sensors 2021, 21, 1395. [CrossRef] | |
dc.relation | 19. Sharghi, E.; Nourani, V.; Molajou, A.; Najafi, H. Conjunction of Emotional ANN (EANN) and Wavelet Transform for RainfallRunoff Modeling. J. Hydroinform. 2019, 21, 136–152. [CrossRef] | |
dc.relation | 20. Ahmadi, M.H.; Kumar, R.; Assad, M.E.H.; Ngo, P.T.T. Applications of Machine Learning Methods in Modeling Various Types of
Heat Pipes: A Review. J. Therm. Anal. Calorim. 2021, 146, 2333–2341. [CrossRef] | |
dc.relation | 21. Mojtahedi, A.; Dadashzadeh, M.; Azizkhani, M.; Mohammadian, A.; Almasi, R. Assessing Climate and Human Activity Effects
on Lake Characteristics Using Spatio-Temporal Satellite Data and an Emotional Neural Network. Environ. Earth Sci. 2022, 81, 61.
[CrossRef] | |
dc.relation | 22. Liu, Y.; Chen, H.; Zhang, L.; Wu, X.; Wang, X.J. Energy Consumption Prediction and Diagnosis of Public Buildings Based on
Support Vector Machine Learning: A Case Study in China. J. Clean. Prod. 2020, 272, 122542. [CrossRef] | |
dc.relation | 23. Walker, S.; Khan, W.; Katic, K.; Maassen, W.; Zeiler, W. Accuracy of Different Machine Learning Algorithms and Added-Value of
Predicting Aggregated-Level Energy Performance of Commercial Buildings. Energy Build. 2020, 209, 109705. [CrossRef] | |
dc.relation | 24. Vapnik, V.; Chapelle, O. Bounds on Error Expectation for Support Vector Machines. Neural Comput. 2000, 12, 2013–2036. [CrossRef]
[PubMed] | |
dc.relation | 25. Shao, Y.H.; Chen, W.J.; Liu, L.M.; Deng, N.Y. Laplacian Unit-Hyperplane Learning from Positive and Unlabeled Examples. Inf.
Sci. 2015, 314, 152–168. [CrossRef] | |
dc.relation | 26. Wang, Y.; Wang, Y.; Song, Y.; Xie, X.; Huang, L.; Pang, W.; Coghill, G.M. An Efficient V-Minimum Absolute Deviation Distribution
Regression Machine. IEEE Access 2020, 8, 85533–85551. [CrossRef] | |
dc.relation | 27. Li, Y.; Wang, Y.; Bi, C.; Jiang, X. Revisiting Transductive Support Vector Machines with Margin Distribution Embedding.
Knowl.-Based Syst. 2018, 152, 200–214. [CrossRef] | |
dc.relation | 28. Ouaddi, K.; Benadada, Y.; Mhada, F.Z. Ant Colony System for Dynamic Vehicle Routing Problem with Overtime. Int. J. Adv.
Comput. Sci. Appl. 2018, 9, 306–315. [CrossRef] | |
dc.relation | 29. Chu, S.C.; Roddick, J.F.; Pan, J.S. Ant Colony System with Communication Strategies. Inf. Sci. 2004, 167, 63–76. [CrossRef] | |
dc.relation | 30. Elsayed, E.K.; Omar, A.H.; Elsayed, K.E. Smart Solution for STSP Semantic Traveling Salesman Problem via Hybrid Ant Colony
System with Genetic Algorithm. Int. J. Intell. Eng. Syst. 2020, 13, 476–489. [CrossRef] | |
dc.relation | 31. Gajpal, Y.; Abad, P. An Ant Colony System (ACS) for Vehicle Routing Problem with Simultaneous Delivery and Pickup. Comput.
Oper. Res. 2009, 36, 3215–3223. [CrossRef] | |
dc.relation | 32. Liu, X.F.; Zhan, Z.H.; Deng, J.D.; Li, Y.; Gu, T.; Zhang, J. An Energy Efficient Ant Colony System for Virtual Machine Placement in
Cloud Computing. IEEE Trans. Evol. Comput. 2018, 22, 113–128. [CrossRef] | |
dc.relation | 33. Opoku, E.A.; Ahmed, S.E.; Song, Y.; Nathoo, F.S. Ant Colony System Optimization for Spatiotemporal Modelling of Combined
EEG and MEG Data. Entropy 2021, 23, 329. [CrossRef] | |
dc.relation | 34. Shen, H.; Tan, H.; Tzempelikos, A. The Effect of Reflective Coatings on Building Surface Temperatures, Indoor Environment and
Energy Consumption—An Experimental Study. Energy Build. 2011, 43, 573–580. [CrossRef] | |
dc.relation | 14 | |
dc.relation | 1 | |
dc.relation | 4 | |
dc.relation | 15 | |
dc.rights | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. | |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://www.mdpi.com/2071-1050/15/4/3118 | |
dc.subject | Building | |
dc.subject | Energy optimization | |
dc.subject | ACS | |
dc.subject | SVM | |
dc.title | Energy consumption and carbon dioxide production optimization in an educational building using the supported vector machine and ant colony system | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |