Evaluation of the chemical demineralization of semianthracites from mines located in Boyacá and Santander (Colombia)

dc.creatorLugo Martinez, Wilmer Alexander
dc.creatorAvila, Huber
dc.creatorVanegas, Marley
dc.creatorAlbis Arrieta, Alberto Ricardo
dc.creatorArdila, Marco
dc.date2020-01-13T19:13:27Z
dc.date2020-01-13T19:13:27Z
dc.date2019-10-01
dc.date.accessioned2023-10-03T19:44:11Z
dc.date.available2023-10-03T19:44:11Z
dc.identifierWilmer Alexander Lugo-Martínez; Huber Yesid Avila-Rios; Marley Cecilia Vanegas-Chamorro; Alberto Albis-Arrieta; Marco Antonio ArdilaBarragán. “Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)” INGE CUC, vol. 15, no. 2, pp. 47-55, 2019. DOI: http://doi.org/10.17981/ingecuc.15.2.2019.05
dc.identifierhttp://hdl.handle.net/11323/5812
dc.identifierhttps://doi.org/10.17981/ingecuc.15.2.2019.05
dc.identifier10.17981/ingecuc.15.2.2019.05
dc.identifier2382-4700
dc.identifierCorporación Universidad de la Costa
dc.identifier0122-6517
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171892
dc.descriptionIntroduction− The non-energy use of high-range carbons (anthracite) has great potential in industries such as metallurgy and in the synthesis of new carbonaceous materials. However, before being used in these applications, they must be treated to remove impurities or unwanted compounds. Objective− To evaluate the efficiency of the process of chemical demineralization of semianthracites through the use of different acids varying the operating conditions of the process. Method− Two samples were chemically characterized: Boavita (B) and Capitanejo (C) from the Boyacá and Santander (Colombia) mines, respectively. Ash and mineral matter removal from the samples was evaluated using [HCl] = 5M, HF 40% and HCl 38% at two different reaction times (45 and 60 minutes) and two particle sizes of the material (250 and 500 µm). Results− The minimum values of ash content (bs) reached through the demineralization process for samples B and C, were 0.65 and 0.76% respectively, which were obtained with a particle size of 250 µm and 60 minutes of exposure in each of the acids used in this study. Conclusions− A smaller particle size increases the contact surface and improves the degree of demineralization, regardless of the time of exposure to acids. The efficiency of the chemical benefit shows yields in the reduction of silicates, aluminates and aluminosilicates to 100%, while for ferric minerals it is above 50%.
dc.descriptionIntroducción− El uso no energético de carbones de alto rango (antracitas) tiene un gran potencial en industrias tales como la metalurgia y en la síntesis de nuevos materiales carbonosos. Sin embargo, antes de su uso en estas aplicaciones, estos deben ser tratados para eliminar impurezas o compuestos no deseados. Objetivo− Evaluar la eficiencia del proceso de desmineralización química de semiantracitas mediante el uso de diferentes ácidos variando las condiciones de operación del proceso. Metodología− Se realizó la caracterización química de dos muestras: Boavita (B) y Capitanejo (C) provenientes de minas de Boyacá y Santander (Colombia), respectivamente. Se evaluó la remoción de cenizas y materia mineral de las muestras utilizando [HCl] = 5M, HF 40% y HCl 38% a dos diferentes tiempos de reacción (45 y 60 minutos) y dos tamaños de partícula del material (250 y 500 µm). Resultados− Los valores mínimos de contenido de cenizas (bs) alcanzados mediante el proceso de desmineralización para las muestras B y C, fueron 0,65 y 0,76% respectivamente, los cuales se obtuvieron con tamaño de partícula de 250 µm y 60 minutos de exposición en cada uno de los ácidos empleados en este estudio. Conclusiones− A menor tamaño de partícula se incrementa la superficie de contacto y mejora el grado de desmineralización, independientemente del tiempo de exposición a los ácidos. La eficiencia del beneficio químico muestra rendimientos en la reducción de silicatos, aluminatos y aluminosilicatos al 100%, mientras que para minerales férricos está por encima del 50%.
dc.format9 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.relationINGE CUC; Vol. 15, Núm. 2 (2019)
dc.relationINGE CUC
dc.relationINGE CUC
dc.relation[1] J. M. Andrésen, C. E. Burgess, P. J. Pappano and H. H. Schobert, “New directions for non-fuel uses of anthracites,” Fuel Processing Technology, vol. 85, no. 12, pp. 1373–1392, Aug. 2004. https://doi.org/10.1016/j.fuproc.2003.05.001
dc.relation[2] W. Xia, G. Xie and Y. Peng, “Recent advances in beneficiation for low rank coals,” Powder Technol., vol. 277, pp. 206–221, Jun. 2015. https://doi.org/10.1016/j.powtec.2015.03.003
dc.relation[3] I. M. Mejia-Villarreal, “Producción de carbón ultralimpio por desmineralización física y química”, M. S. thesis, Dept. Ing. quim., Universidad del Valle, Cali, Colombia, 2004.
dc.relation[4] M. Alfaro-Domínguez, F. J. Higes-Rolando, M. L. RojasCervantes and V. Gómez-Serrano, “Demineralisation of semi-anthracite char with molten salts/HCl. Effects on the porous texture and reactivity in air,” Appl. Surf. Sci., vol. 252, no. 17, pp. 6005–6008, Jun. 2006. https://doi. org/10.1016/j.apsusc.2005.11.002
dc.relation[5] J. W. Leonard, Coal preparation. Society for Mining, Englewood, Colorado, USA: Metallurgy and Exploration, 1991.
dc.relation[6] M. C. Vanegas Chamorro, “Estudio del mecanismo de grafitización de antracitas sudafricanas,” M. S. thesis, Dept. Ing. quim., Universidad de Oviedo, Oviedo, España, 2012.
dc.relation[7] P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu and B. D. Pandey, “Demineralization of low grade coal - A review,” Renew. Sustain. Energy Rev., vol. 41, pp. 745–761, Jan. 2015. https://doi.org/10.1016/j.rser.2014.08.072
dc.relation[8] S. K. Behera, S. Chakraborty and B. C. Meikap, “Chemical demineralization of high ash Indian coal by using alkali and acid solutions,” Fuel, vol. 196, pp. 102–109, May. 2017. https://doi.org/10.1016/j.fuel.2017.01.088
dc.relation[9] M. K. Saini, P. K. Srivastava and N. Choudhury, “Development of Moisture and Ash Based Correlation for the Estimation of Mineral Matter in High Ash Indian Coal,” Int. J. Clean Coal Energy, vol. 4, no. 2, pp. 33–42, May. 2015. https://doi.org/10.4236/ijcce.2015.42004
dc.relation[10] B. C. Smith, Infrared Spectral Interpretation: A Systematic Approach. Boca Raton, Florida, USA: CRC Press Taylor and Francis Group, 1998.
dc.relation[11] A. M. Puziy, O. I. Poddubnaya, A. Martínez-Alonso, A. Castro-Muñiz, F. Suárez-García and J. M. D. Tascón, “Oxygen and phosphorus enriched carbons from lignocellulosic material,” Carbon N. Y., vol. 45, no. 10, pp. 1941–1950, Sep. 2007. https://doi.org/10.1016/j.carbon.2007.06.014
dc.relation[12] H. Machnikowska, A. Krztoń, and J. Machnikowski, “The characterization of coal macerals by diffuse reflectance infrared spectroscopy,” Fuel, vol. 81, no. 2, pp. 245–252, Jan. 2002. https://doi.org/10.1016/S0016-2361(01)00125- 9
dc.relation[13] G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts. Hoboken, Nueva Jersey, USA: John Wiley & Sons, 2004.
dc.relation[14] P. C. Painter, M. Starsinic, E. Squires and A. A. Davis, “Concerning the 1600 cm−1 region in the i.r. spectrum of coal,” Fuel, vol. 62, no. 6, pp. 742–744, Jun. 1983. https:// doi.org/10.1016/0016-2361(83)90317-4
dc.relation[15] S. zhang, z. Chen, X. Chen and X. Gong, “Effects of ash/ K2CO3/Fe2O3 on ignition temperature and combustion rate of demineralized anthracite,” J. of Fuel Chemistry and Technol., vol. 42, no. 2, pp. 166-174, Feb. 2014. https:// doi.org/10.1016/S1872-5813(14)60013-X
dc.relation[16] X. Gong and S. zhang, “Changes in char structure due to inorganic matters during anthracite pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 127, pp. 170-175, Sept. 2017. https://doi.org/10.1016/j.jaap.2017.08.011
dc.relation[17] P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu and B. D. Pandey, “Demineralization of low grade coal- A review,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 745-761, Jan. 2015. https://doi.org/10.1016/j. rser.2014.08.072
dc.relation55
dc.relation47
dc.relationAntracitas
dc.relationBeneficio químico
dc.relationMateria mineral
dc.relationDesmineralización
dc.relationÁcido clorhídrico
dc.relationÁcido fluorhídrico
dc.relationAnthracite
dc.relationChemical beneficiat
dc.relationMineral matter
dc.relationDemineralization
dc.relationHydrochloric acid
dc.relationHydrofluoric acid
dc.relation2
dc.relation15
dc.relationINGE CUC
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceINGE CUC
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1840
dc.titleEvaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)
dc.titleEvaluation of the chemical demineralization of semianthracites from mines located in Boyacá and Santander (Colombia)
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución