dc.creatorMARTINO NETO, JOSE
dc.creatorSalomon, Valerio
dc.creatorOrtiz Barrios, Miguel Angel
dc.creatorPetrillo, Antonella
dc.date2022-06-16T14:38:18Z
dc.date2024-02-28
dc.date2022-06-16T14:38:18Z
dc.date2022-02-28
dc.date.accessioned2023-10-03T19:44:04Z
dc.date.available2023-10-03T19:44:04Z
dc.identifierJOUR Martino Neto, Jose Salomon, Valerio Antonio Pamplona, Ortiz-Barrios, Miguel Angel, Petrillo Antonella 2022 2022/02/28 Compatibility and correlation of multi-attribute decision making: a case of industrial relocation Annals of Operations Research Industrial relocation (IR) is a business strategy consisting of moving operations locations. The purpose of this paper is to present how to assess, with multi-attribute decision-making (MADM), alternatives for IR. With MADM, IR strategies can be assessed not only based on a single attribute, as costs, or profits. This paper presents the application of MADM in a real case of IR. Four leading methods of MADM were applied: analytic hierarchy process (AHP), multi-attribute utility theory (MAUT), multi-attribute value theory (MAVT), and technique of order preference by similarity to ideal solution (TOPSIS). Results of AHP, MAUT, MAVT, and TOPSIS were quite similar, indicating the decision for the company not to relocate. A joint comparison of results with compatibility indices and correlation coefficients is the major novelty presented by this paper to the field of Operations Research, known as MADM. 1572-9338 https://doi.org/10.1007/s10479-022-04603-9
dc.identifier0254-5330
dc.identifierhttps://hdl.handle.net/11323/9265
dc.identifier10.1007/s10479-022-04603-9
dc.identifier1572-9338
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171874
dc.descriptionIndustrial relocation (IR) is a business strategy consisting of moving operations locations. The purpose of this paper is to present how to assess, with multi-attribute decision-making (MADM), alternatives for IR. With MADM, IR strategies can be assessed not only based on a single attribute, as costs, or profits. This paper presents the application of MADM in a real case of IR. Four leading methods of MADM were applied: analytic hierarchy process (AHP), multi-attribute utility theory (MAUT), multi-attribute value theory (MAVT), and technique of order preference by similarity to ideal solution (TOPSIS). Results of AHP, MAUT, MAVT, and TOPSIS were quite similar, indicating the decision for the company not to relocate. A joint comparison of results with compatibility indices and correlation coefficients is the major novelty presented by this paper to the field of Operations Research, known as MADM.
dc.format22 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherSpringer Netherlands
dc.publisherNetherlands
dc.relationAnnals of Operations Research
dc.relationArena, M., Azzone, G., & Piantoni, G. (2020). Shared value creation during site decommissioning: A case study from the energy sector. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.119587
dc.relationAsuero, A. G., Sayago, A., & González, A. G. (2006). The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry, 36(1), 41–59. https://doi.org/10.1080/10408340500526766
dc.relationAtakhan-Kenneweg, M., Oerlemans, L. A., & Raab, J. (2021). New inter-organizational knowledge tie forma tion after firm relocation: Investigating the impact of spatial, relational, and temporal context. Journal of Business Research, 127, 264–276. https://doi.org/10.1016/j.jbusres.2021.01.023
dc.relationAus Dem Moore, N., Großkurth, P., & Themann, M. (2019). Multinational corporations and the EU Emissions Trading System: The specter of asset erosion and creeping deindustrialization. Journal of Environmental Economics and Management, 94, 1–26. https://doi.org/10.1016/j.jeem.2018.11.003
dc.relationBrouwer, A. E., Mariotti, I., & Van Ommeren, J. N. (2004). The firm relocation decision: An empirical inves tigation. The Annals of Regional Science, 38(2), 335–347. https://doi.org/10.1007/s00168-004-0198-5
dc.relationCay, T., & Yuan, M. (2013). Evaluation of reallocation criteria in land consolidation studies using the Analytic Hierarchy Process (AHP). Land Use Policy, 30(1), 541–548. https://doi.org/10.1016/j.landusepol.2012.04.023
dc.relationCentral Intelligence Agency. (2021). The World Factbook 2021. Retrieved June 18, 2021, from https://www.cia.gov/the-world-factbook/
dc.relationChang, W.-L. (2009). Using multi-criteria decision aid to rank and select co-branding partners: From a brand personality perspective. Kybernetes, 38(6), 950–965. https://doi.org/10.1108/03684920910973171
dc.relationChen, W., Shen, Y., Wang, Y., & Wu, Q. (2018). The effect of industrial relocation on industrial land use efficiency in China: A spatial econometrics approach. Journal of Cleaner Production, 205, 525–535. https://doi.org/10.1016/j.jclepro.2018.09.106
dc.relationDoczy, R., & AbdelRazig, Y. (2017). Green buildings case study analysis using AHP and MAUT in sus tainability and costs. Journal of Architectural Engineering, 23(3), 05017002. https://doi.org/10.1061/ (ASCE)AE.1943-5568.0000252
dc.relationDoumpos, M., & Zopounidis, C. (2002). Multicriteria decision aid classification methods. Kluwer.
dc.relationEmrouznejad, A., & Marra, M. (2017). The state of the art development of AHP (1979–2017): A literature review with a social network analysis. International Journal of Production Research, 55(22), 6653–6675. https://doi.org/10.1080/00207543.2017.1334976
dc.relationFarahani, R. Z., SteadieSeifi, M., & Asgari, N. (2010). Multiple criteria facility location problems: A survey.Applied Mathematical Modelling, 34(7), 1689–1709. https://doi.org/10.1016/j.apm.2009.10.005
dc.relationGaruti, C., & Salomon, V. (2012). Compatibility indices between priority vectors. International Journal of the Analytic Hierarchy Process, 4(2), 152–160. https://doi.org/10.13033/ijahp.v4i2.130
dc.relationGaruti, C. E. (2019). A set theory justification of Garuti’s compatibility index. Journal of Multi-Criteria Decision Analysis, 27(2), 50–60. https://doi.org/10.1002/mcda.1667
dc.relationGrillitsch, M., & Asheim, B. (2018). Place-based innovation policy for industrial diversification in regions. European Planning Studies, 26(8), 1638–1662. https://doi.org/10.1080/09654313.2018.1484892
dc.relationHwang, C.-L., & Yoon, K. (1981). Multiple attribute decision making. Springer.
dc.relationIndraprahasta, G. S., Derudder, B., & Hudalah, D. (2019). Local institutional actors and globally linked terri torial development in Bekasi District: A strategic coupling? Singapore Journal of Tropical Geography, 40(2), 219–238. https://doi.org/10.1111/sjtg.12269
dc.relationIshizaka, A., & Nemery, P. (2013). Multi-criteria decision analysis. Wiley.
dc.relationJiang, Y., Timmermans, H., & Yu, B. (2018). Relocation of manufacturing industry from the perspective of transport accessibility: An application of percolation theory. Transport Policy, 63, 10–29. https://doi.org/ 10.1016/j.tranpol.2017.11.003
dc.relationJohansson, M., & Olhager, J. (2017). Manufacturing relocation through offshoring and backshoring: The case of Sweden. Journal of Manufacturing Technology Management, 29(4), 637–657. https://doi.org/10.1108/ JMTM-01-2017-0006
dc.relationKhan, S. A., Chaabane, A., & Dweiri, F. T. (2018). Multi-criteria decision-making methods application in supply chain management: A systematic literature review. In V. A. Salomon (Ed.), Multi-criteria methods and techniques applied to supply chain management (pp. 3–31). Intech Open.
dc.relationKoch, N., & Basse Mama, H. (2019). Does the EU Emissions Trading Systems induce investment leakage? Evidence from German multinational firms. Energy Economics, 81, 479–492. https://doi.org/10.1016/j. eneco.2019.04.018
dc.relationKurata, H., Nomura, R., & Suga, N. (2020). Vertical specialization in North-South trade: Industrial relocation, wage and welfare. Review of International Economics, 28(1), 119–137. https://doi.org/10.1111/roie. 12444
dc.relationLee, C.-Y., & Chen, B.-S. (2018). Mutually-exclusive-and-collectively-exhaustive feature selection scheme.Applied Soft Computing, 68, 961–971. https://doi.org/10.1016/j.asoc.2017.04.055
dc.relationLee, E., Lee, J., & Jongseok, L. (2006). Reconsideration of the winner-take-all hypothesis: Complex networks and local bias. Management ScienceVol., 52(12), 1838–1848. https://doi.org/10.1287/mnsc.1060.0571
dc.relationLi, M., & Wang, Q. (2020). Does industrial relocation alleviate environmental pollution? A mathematical economics analysis. Environmental, Development and Sustainability, 22(5), 4673–4698. https://doi.org/10.1007/s10668-019-00403-7
dc.relationLi, T., Liu, Y., Wang, C., Olfsson, G., Wang, Z., & Wang, H. (2019). Decentralization of the non-capital functions of Beiijing: Industrial relocation and its environmental effects. Journal of Cleaner Production, 224, 545–556. https://doi.org/10.1016/j.jclepro.2019.03.247
dc.relationLiao, H. F., & Chan, R. C. (2011). Industrial relocation of Hong Kong manufacturing firms: Towards an expanding industrial space beyond the Pearl River Delta. GeoJournal, 76(6), 623–639. https://doi.org/10.1007/s10708-009-9316-3
dc.relationLiern, V., & Pérez-Gladish, B. (2020). Multiple criteria ranking method based on functional proximity index: Un-weighted TOPSIS. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03718-1
dc.relationLipovetsky, S. (2020). Priority vector estimation: Consistency, compatibility, precision. International Journal of the Analytic Hierarchy Process, 12(3), 577–591. https://doi.org/10.13033/ijahp.v12i3.801
dc.relationLiu, Y., Sun, Z., Liang, H., & Dong, Y. (2021a). Ranking range model in multiple attribute decision making: A comparison of selected methods. Computers & Industrial Engineering. https://doi.org/10.1016/j.cie.2021.107180
dc.relationLiu, Y., Yeung, G., Liang, Y.-T., & Li, X. (2021). Pro-active regional policy and the relocation of manufacturing firms: A case study of state-led industrial relocation in Guangdong. China: Eurasian Geography and Economics. https://doi.org/10.1080/15387216.2020.1870515
dc.relationLombardi Netto, A., Salomon, V. A., Ortiz-Barrios, M. A., Florek-Paszkowska, A. K., Petrillo, A., & De Oliveira, O. J. (2020). Multiple criteria assessment of sustainability programs in the textile industry. Inter national Transactions in Operational Research, 28(3), 1550–1572. https://doi.org/10.1111/itor.12871
dc.relationLundberg, H., Andresen, E., & Törnroos, J. -Å. (2016). Understanding network emergence after turbulent industrial relocation: A Swedish biorefinery initiative. European Management Journal, 34(5), 475–483. https://doi.org/10.1016/j.emj.2016.03.001
dc.relationMardani, A., Jusoh, A., Nor, K. M. D., Khalifah, Z., Zakwan, N., & Valipour, A. (2015a). Multiple crite ria decision-making techniques and their applications: A review of the literature from 2000 to 2014. Economic Research-Ekonomska Istraživanja, 28(1), 516–571. https://doi.org/10.1080/1331677X.2015.1075139
dc.relationMardani, A., Jusoh, A., & Zavadskas, E. K. (2015b). Fuzzy multiple criteria decision-making techniques and applications: Two decades review from 1994 to 2014. Expert Systems with Applications, 42(8), 4126–4148. https://doi.org/10.1016/j.eswa.2015.01.003
dc.relationMelo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management: A review. European Journal of Operational Research, 169(2), 401–412. https://doi.org/10.1016/j.ejor.2008.05.007
dc.relationMu, E., Cooper, O., & Peasley, M. (2020). Best practices in analytic network process studies. Expert Systems with Applications, 159, 113536. https://doi.org/10.1016/j.eswa.2020.113536
dc.relationOliveira, G. D., & Dias, L. C. (2020). The potential learning effect of a MCDA approach on consumer preferences for alternative fuel vehicles. Annals of Operations Research, 293(2), 767–787. https://doi.org/10.1007/s10479-020-03584-x
dc.relationOppio, A., Bottero, M., & Arcidiacono, A. (2018). Assessing urban quality: a proposal for a MCDA evaluation framework. Annals of Operations Research. https://doi.org/10.1007/s10479-017-2738-2
dc.relationOrtiz Barrios, M., Cabarcas Reyes, J., Ishizaka, A., Barbati, M., Jaramillo Rueda, N., & Carrascal Zambrano, G. J. (2020). A hybrid fuzzy multi criteria decision making model for selecting a sustainable supplier of forklift filters: A case study from the mining industry. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03737-y
dc.relationOrtiz-Barrios, M., & Alfaro-Saiz, J.-J. (2020). A hybrid fuzzy multi-criteria decision-making model to evaluate the overall performance of public emergency departments: A case study. International Journal of Infor mation Technology & Decision Making, 19(6), 1485–1548. https://doi.org/10.1142/S0219622020500364
dc.relationOrtiz-Barrios, M., Hoz, C.M.-D., López-Meza, P., Petrillo, A., & De Felice, F. (2020). A case of food supply chain management with AHP, DEMATEL, and TOPSIS. Journal of Multi-Criteria Decision Analysis, 27(1–2), 104–128. https://doi.org/10.1002/mcda.1693
dc.relationPappas, D., Chalvatzis, K. J., Guan, D., & Ioannidis, A. (2018). Energy and carbon intensity: A study on the cross-country industrial shift from China to India and SE Asia. Applied Energy, 225, 183–194. https://doi.org/10.1016/j.apenergy.2018.04.132
dc.relationRice, J. A. (2007). Mathematical statistics and data analysis (e-book ed.). Cengage.
dc.relationRoy, B. (1981). The optimisation problem formulation: Criticism and overstepping. Journal of the Operational Research Society, 32(6), 427–436. https://doi.org/10.1057/jors.1981.93
dc.relationSaaty, T. L. (1974). Measuring the fuzziness of sets. Journal of Cybernetics, 4(4), 53–61. https://doi.org/10.1080/01969727408546075
dc.relationSaaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psy chology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5
dc.relationSaaty, T. L. (1980). The analytic hierarchy process. McGraw-Hill.
dc.relationSaaty, T. L. (1986). Absolute and relative measurement with the AHP–The most livable cities in the United States. Socio-Economic Planning Sciences, 20(6), 327–331. https://doi.org/10.1016/0038-0121(86)90043-1
dc.relationSaaty, T. L. (2013). Principia mathematica decernendi (Kindle). RWS.
dc.relationSaaty, T. L., & Rogers, P. C. (1976). Higher education in the United States (1985–2000) Scenario construction using a hierarchical framework with eigenvector weighting. Socio-Economic Planning Sciences, 10(6), 251–263. https://doi.org/10.1016/0038-0121(76)90012-4
dc.relationSalomon, V. A. (2016). Absolute measurement and ideal synthesis on AHP. International Journal of the Analytic Hierarchy Process, 3(1), 538–545. https://doi.org/10.13033/ijahp.v8i3.452
dc.relationSalomon, V. A., & Rangel, L. D. (2015). Comparing rankings from using TODIM and a fuzzy expert system. Procedia Computer Science, 55, 126–138. https://doi.org/10.1016/j.procs.2015.07.019
dc.relationSalomon, V. P., Tramarico, C. L., & Marins, F. S. (2016). Analytic hierarchy process applied to supply chain management. In F. De Felice, T. L. Saaty, & A. Petrillo (Eds.), Applications and theory of analytic hierarchy process—Decision making for strategic decisions (pp. 1–16). IntechOpen.
dc.relationSchamp, E. W. (2005). Decline of the district, renewal of firms: An evolutionary approach to footwear produc tion in the Pirmasens area, Germany. Environment and Planning a: Economy and Space, 37(4), 617–634. https://doi.org/10.1068/a36275
dc.relationShih, H.-S., Cheng, C.-B., Chen, C.-C., & Lin, Y.-C. (2014). Environmental impact on the vendor selection problem in electronics firms: A systematic analytic network process with BOCR. International Journal of the Analytic Hierarchy Process, 6(2), 202–227. https://doi.org/10.13033/ijahp.v6i2.256
dc.relationTang, T., Li, Z., Ni, J., & Yuan, J. (2020). Land costs, government intervention, and migration of firms: The case of China. China Economic Review. https://doi.org/10.1016/j.chieco.2020.101560
dc.relationTramarico, C. L., Mizuno, D., Salomon, V. P., & Marins, F. S. (2015). Analytic hierarchy process and supply chain management: A bibliometric study. Procedia Computer Science, 55, 441–450. https://doi.org/10.1016/j.procs.2015.07.005
dc.relationVaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. https://doi.org/10.1016/j.ejor.2004.04.028
dc.relationVenables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer.
dc.relationWallenius, J., Dyer, J. S., Fishburn, P. C., Steuer, R. E., Zionts, S., & Deb, K. (2008). Multiple criteria decision making, multiattribute utility theory: Recent accomplishments and what lies ahead. Management Science, 54(7), 1336–1349. https://doi.org/10.1287/mnsc.1070.0838
dc.relationWang, H., Dong, C., & Liu, Y. (2019). Beijing direct investment to its neighbors: A pollution haven or pollution halo effects? Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.118062
dc.relationWang, Y. (2015). A fuzzy multi-criteria decision-making model based on simple additive weighting method and relative preference relation. Applied Soft Computing, 30, 412–420. https://doi.org/10.1016/j.asoc.2015.02.002
dc.relationWhitaker, R. (2007). Validation examples of the analytic hierarchy process and analytic network process. Mathematical and Computer Modelling, 46(7–8), 840–859. https://doi.org/10.1016/j.mcm.2007.03.018
dc.relationWijnmalen, D. J. (2007). Analysis of benefits, opportunities, costs, and risks (BOCR) with the AHP–ANP: A critical validation. Mathematical and Computer Modelling, 46(7–8), 892–905. https://doi.org/10.1016/j.mcm.2007.03.020
dc.relationWikimedia Commons. (2008) Brazil Blank Map light.svg. Retrived June 18, 2021, from https://images.app.goo.gl/ij5mSUQxJJ57p8gx6
dc.relationWikimedia Commons. (2008) Brazil Blank Map light.svg. Retrived June 18, 2021, from https://images.app.goo.gl/ij5mSUQxJJ57p8gx6
dc.relationWu, A., Li, G., Sun, T., & Liang, Y. (2014). Effects of industrial relocation on Chinese regional economic growth disparities: Based on system dynamics modeling. Chinese Geographical Science, 24, 706–716. https://doi.org/10.1007/s11769-014-0664-7
dc.relationYang, Y., & Gallagher, M. (2017). Moving in and moving up? Labor conditions and China’s changing devel opment model. Public Administration and Development, 37(3), 160–175. https://doi.org/10.1002/pad.1818
dc.relationYoon, M.-S. (2020). Notes on the use of compatibility index in the analytic hierarchy process. In: Proceed ings of the International Symposium on the Analytic Hierarchy Process. https://doi.org/10.13033/isahp.y2020.047
dc.relationZamani-Sabzi, H., King, J. P., Gard, C. C., & Abudu, S. (2016). Statistical and analytical comparison of multi-criteria decision-making techniques under fuzzy environment. Operations Research Perspectives, 3, 92–117. https://doi.org/10.1016/j.orp.2016.11.001
dc.relationZanakis, S. H., Solomon, A., Wishart, N., & Dublish, S. (1998). Multi-attribute decision making: A simulation comparison of select methods. European Journal of Operational Research,107(3), 507–529. https://doi.org/10.1016/S0377-217(97)00147-1
dc.relationZavadskas, E. K., Turskis, Z., & Kildien˙e, S. (2014). State of art surveys of overviews on MCDM/MADM methods. Technological and Economic Development of Economy, 20(1), 165–179. https://doi.org/10.3846/20294913.2014.892037
dc.relationZhang, L., Meng, Q., Sun, Z., & Sun, Y. (2017). Spatial and temporal analysis of the mitigating effects of industrial relocation on the surface urban heat island over China. International Journal of Geo Information, 6(4), 1–14. https://doi.org/10.3390/ijgi6040121
dc.relationZhang, W., Zhang, X., Zhang, M., & Li, W. (2020). How to coordinate economic, logistics and ecological environment? Evidences from 30 provinces and cities in China. Sustainability, 12(3), 1–23. https://doi.org/10.3390/su12031058
dc.relationZhang, X., Xu, Z., & Wang, H. (2015). Heterogeneous multiple criteria group decision making with incomplete weight information: A deviation modeling approach. Information Fusion, 25, 49–62. https://doi.org/10.1016/j.inffus.2014.10.006
dc.relation22
dc.relation1
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rights© The Author(s), under exclusive licence to Springer Science Business Media, LLC, part of Springer Nature 2022
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://link.springer.com/article/10.1007/s10479-022-04603-9
dc.subjectAnalytic hierarchy process
dc.subjectCompatibility
dc.subjectCorrelation
dc.subjectIndustrial relocation
dc.subjectMulti-attribute utility theory
dc.subjectTechnique of order preference by similarity to ideal solution
dc.titleCompatibility and correlation of multi-attribute decision making: a case of industrial relocation
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución