dc.creatorNeckel, Alcindo
dc.creatorCarollo Toscan, Paloma
dc.creatorAniceto Kujawa, Henrique
dc.creatorWilliam Bodah, Brian
dc.creatorKorcelski, Cleiton
dc.creatorStolfo Maculan, Laércio
dc.creatorOliveira de Almeida Silva, Caliane Christie
dc.creatorGonçalves Junior, Afonso Celso
dc.creatorSnak, Aline
dc.creatorDal Moro, Leila
dc.creatorSilva Oliveira, Luis Felipe
dc.date2023-08-23T21:24:54Z
dc.date2024-02-17
dc.date2023-08-23T21:24:54Z
dc.date2023-02-17
dc.date.accessioned2023-10-03T19:44:03Z
dc.date.available2023-10-03T19:44:03Z
dc.identifierNeckel, A., Toscan, P.C., Kujawa, H.A. et al. Hazardous elements in urban cemeteries and possible architectural design solutions for a more sustainable environment. Environ Sci Pollut Res 30, 50675–50689 (2023). https://doi.org/10.1007/s11356-023-25891-z
dc.identifier0944-1344
dc.identifierhttps://hdl.handle.net/11323/10401
dc.identifier10.1007/s11356-023-25891-z
dc.identifier1614-7499
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171870
dc.descriptionThe general objective of this study is to identify the presence of hazardous elements in the soils of five urban cemeteries in the city of Passo Fundo, in southern Brazil, and to design solutions (architecturally) for future cemeteries to be more sustainable by mitigating toxicological risks to the population residing in the area. A total of 250 soil samples were obtained from points within the cemeteries and in areas surrounding the two oldest cemeteries at a distance of up to 400 m. Twelve architects who design cemeteries primarily focused on sustainability were interviewed, and presented their suggestions for sustainable urban cemetery design. The Building Information Modeling (BIM) computer modeling system was utilized to present a visual representation of suggested architectural features by these architects. The concentration of Pb in the vicinity of cemeteries deserves special attention, as concentrations of this neurotoxin exceed the federal limits set by Brazil. Soil Pb values were found to exceed the limit of 72 mg kg−1 up to a distance of 400 m from the walls of cemeteries A and B, indicating the presence of a danger to human health even at greater distances. This manuscript highlights construction features that enable future burial structures to adequately mitigate the very real problem of contaminants entering the environment from current cemetery design. Two-thirds of the technicians interviewed for this manuscript, each of whom specialize in Brazilian cemetery design, highlighted the importance of revitalizing urban vegetation both when constructing and revitalizing urban vertical cemeteries.
dc.format15 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherSpringer Science + Business Media
dc.publisherGermany
dc.relationEnvironmental Science and Pollution Research
dc.relationAntwi-Afari M, Li H, Pärn E, Edwards D (2018) Critical success factors for implementing building information modelling (BIM): a longitudinal review. Autom Constr 91:100–110. https://doi.org/ 10.1016/j.autcon.2018.03.010
dc.relationAOAC (2016) Digestão Nitroperclórica da amostra. Método AOAC – Association of Ofcial Analytical Chemist. Ofcial Methods of Analysis, 21st edn. Maryland, pp 3172
dc.relationApp M, Strohbach MW, Schneider AK, Schröder B (2022) Making the case for gardens: estimating the contribution of urban gardens to habitat provision and connectivity based on hedgehogs (Erinaceus europaeus). Landsc Urban Plan. 220:104347. https://doi.org/10. 1016/j.landurbplan.2021.104347
dc.relationAtazadeh B, Olfat H, Rajabifard A, Kalantari M, Shojaei D, Marjani AM (2021) Linking Land Administration Domain Model and BIM environment for 3D digital cadastre in multi-storey buildings. Land Use Policy 104:105367. https://doi.org/10.1016/j. landusepol.2021.105367
dc.relationBennett G, Davies P (2015) Urban cemetery planning and the conficting role of local and regional interests. Land Use Policy 42:450–459. https://doi.org/10.1016/j.landusepol.2014.08.011
dc.relationChen J, Dong Z, Lei Y, Yang Y, Guo Z, Ye J (2022) β-glucan mitigation on toxicological efects in monocytes/macrophages of Nile tilapia (Oreochromis niloticus) following copper exposure. Fish Shellfsh Immunol 121:124–134. https://doi.org/10.1016/j.fsi.2022.01.003
dc.relationCovre WP, Ramos SJ, Pereira WVS, de Souza ES, Martins GC, Teixeira OMM, do Amarante CB, Dias YN, Fernandes AR (2022) Impact of copper mining wastes in the Amazon: properties and risks to environment and human health. J Hazard Mater 421:126688. https://doi.org/10.1016/j.jhazmat.2021.126688
dc.relationCELA (2023) Soil Analysis Quality Control Program. Paraná – Brazil. https://sbcs-nepar.org.br/cela. Accessed 04 Jan 2023
dc.relationCETESB (2016) Environmental Sanitation Technology Company. São Paulo, Brazil. https://cetesb.sp.gov.br/laboratorios/orientacoes/. Accessed 5 Mar 2022
dc.relationDąbrowski P, Kulus M, Grzelak J, Radzikowska M, Oziembłowski M, Domagała Z, Krajcarz MT (2020) Assessing weaning stress - relations between enamel hypoplasia, δ18O and δ13C values in human teeth obtained from early modern cemeteries in Wroclaw, Poland. Ann Anat Anat Anz 232:151546. https://doi.org/10. 1016/j.aanat.2020.151546
dc.relationDal Moro L, Maculan LS, Neckel A, de Vargas Mores G, Pivoto D, Bodah ET, Bodah BW, Oliveira ML (2021) Geotechnologies applied to the analysis of buildings involved in the production of poultry and swine to the integrated food safety system and environment. J Environ Chem. Eng 9(6):106475. https://doi.org/ 10.1016/j.jece.2021.106475
dc.relationD’Haese PC, de Broe ME (2001) Aluminium iron: implications for Alzheimer’s disease. Alum Alzh Disease 221–231. https://doi. org/10.1016/b978-044450811-9/50036-7
dc.relationD’Haese PC, Douglas G, Verhulst A, Neven E, Behets GJ, Vervaet BA, Finsterle K, Lürling M, Spears B (2019) Human health risk associated with the management of phosphorus in freshwaters using lanthanum and aluminium. Chemosphere 220:286–299. https:// doi.org/10.1016/j.chemosphere.2018.12.093
dc.relationDórea JG (2020) Neurotoxic effects of combined exposures to aluminum and mercury in early life (infancy). Environ Res 188:109734. https://doi.org/10.1016/j.envres.2020.109734
dc.relationDurdyev S, Ashour M, Connelly S, Mahdiyar A (2022) Barriers to the implementation of Building Information Modelling (BIM) for facility management. J Build Eng 46:103736. https://doi.org/10. 1016/j.jobe.2021.103736
dc.relationEmbrapa (2022) soils. Technical reports database. https://www.embra pa.br/trigo/infraestrutura/solos1. Accessed 19 May 2022
dc.relationFerreira JEV, Pinheiro MTS, dos Santos WRS, Maia RDS (2016) Graphical representation of chemical periodicity of main elements through boxplot. Educ Quim 27:209–216. https://doi.org/ 10.1016/j.eq.2016.04.007
dc.relationFerreira EPDB, Dusi AN, Costa JR, Xavier GR, Rumjanek NG (2009) Assessing insecticide and fungicide efects on the culturable soil bacterial community by analyses of variance of their DGGE fngerprinting data. Eur J Soil Biol 45:466–472. https://doi.org/10. 1016/j.ejsobi.2009.07.003
dc.relationFranco DS, Georgin J, Villarreal Campo LA, Mayoral MA, Goenaga JO, Fruto CM, Neckel A, Oliveira ML, Ramos CG (2022) The environmental pollution caused by cemeteries and cremations: a review. Chemosphere 307:136025. https://doi.org/10.1016/j. chemosphere.2022.136025
dc.relationGuo G, Lei M, Wang Y, Song B, Yang J (2018) Accumulation of As, Cd, and Pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment. Int J Environ Res 15(11):2601. https://doi.org/10.3390/ijerph15112601
dc.relationGwenzi W (2021) Autopsy, thanatopraxy, cemeteries and crematoria as hotspots of toxic organic contaminants in the funeral industry continuum. Sci Total Environ 753:141819. https://doi.org/10. 1016/j.scitotenv.2020.141819
dc.relationHariyono WP (2015) Vertical cemetery. Procedia Eng 118:201–214. https://doi.org/10.1016/j.proeng.2015.08.419
dc.relationHe Y, Li H, Wang S, Yao X (2021) Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression. Neurocomputing 430:121– 137. https://doi.org/10.1016/j.neucom.2020.10.093
dc.relationHessel EV, Staal YC, Piersma AH, Braver-Sewradj SP, Ezendam J (2021) Occupational exposure to hexavalent chromium. Part I. Hazard assessment of non-cancer health efects. Regul Toxicol Pharmacol 126:105048. https://doi.org/10.1016/j.yrtph.2021. 105048
dc.relationIAC (2023) Agronomic Institute - Center for Research and Development of Soils and Environmental Resources. Paraná – Brazil. http://lab.iac.sp.gov.br/Relatorios/ListaLaboratoriosSite.asp. Accessed 04 Jan 2023
dc.relationIBGE (2022) Brazilian Institute of Geography and Statistics. Demographic Data of 2021 – Brazil. https://cidades.ibge.gov.br/. Accessed 10 Mar 2022
dc.relationKlaufus C (2016) “The dead are killing the living”: spatial justice, funerary services, and cemetery land use in urban Colombia. Habitat Int 54:74–79. https://doi.org/10.1016/j.habitatint.2015.11.032
dc.relationKlein GL (2019) Aluminum toxicity to bone: a multisystem efect? Osteoporos. Sarcopenia 5(1):2–5. https://doi.org/10.1016/j.afos. 2019.01.001
dc.relationLi X, Zhang B, Li N, Ji X, Liu K, Jin M (2019) Zebrafsh neurobehavioral phenomics applied as the behavioral warning methods for fngerprinting endocrine disrupting efect by lead exposure at environmentally relevant level. Chemosphere 231:315–325. https://doi.org/10.1016/j.chemosphere.2019.05.146
dc.relationLi X, Zhang J, Gong Y, Liu Q, Yang S, Ma J, Zhao L, Hou H (2020) Status of copper accumulation in agricultural soils across China (1985–2016). Chemosphere 244:125516. https://doi.org/10. 1016/j.chemosphere.2019.125516
dc.relationLi X, Zhou Y, Zhang J (2021) Status and associated human health risk of zinc accumulation in agricultural soils across China. Process Saf Environ Prot 14:867–876. https://doi.org/10.1016/j.psep.2020.12.017
dc.relationLoef M, Walach H (2011) Copper and iron in Alzheimer’s disease: a systematic review and its dietary implications. Br J Nutr 107(1):7– 19. https://doi.org/10.1017/s000711451100376x
dc.relationLöki V, Molnár V, Süveges K, Heimeier H, Takács A, Nagy T, Fekete R, Lovas-Kiss D, Kreutz KC, Sramkó G, Tökölyi J (2019) Predictors of conservation value of Turkish cemeteries: a case study using orchids. Landsc Urban Plan 186:36–44. https://doi.org/10. 1016/j.landurbplan.2019.02.016
dc.relationLu Y, Wu Z, Chang R, Li Y (2017) Building Information Modeling (BIM) for green buildings: a critical review and future directions. Autom Constr 83:134–148. https://doi.org/10.1016/j.autcon.2017. 08.024
dc.relationMascalchi M, Orsini C, Pinna D, Salvadori B, Siano S, Riminesi C (2020) Assessment of diferent methods for the removal of bioflms and lichens on gravestones of the English Cemetery in Florence. Int Biodeterior 154:105041. https://doi.org/10.1016/j.ibiod. 2020.105041
dc.relationMaroni D, Cardoso GT, Neckel A, Maculan LS, Oliveira ML, Bodah ET, Bodah BW, Santosh M (2021) Land surface temperature and vegetation index as a proxy to microclimate. J Environ Chem Eng 9(4):105796. https://doi.org/10.1016/j.jece.2021.105796
dc.relationMiao F, Zhang Y, Li Y, Lin Q (2022) A synthetic health risk assessment based on geochemical equilibrium simulation and grid spatial interpolation for zinc (II) species. J Environ Manage 304:114207. https://doi.org/10.1016/j.jenvman.2021.114207
dc.relationMohammed MA, Abudeif AM (2020) Use of the geophysical approaches for studying the environmental impact assessment of the human burying techniques to the soil and groundwater: a case study of Geheina cemeteries, Sohag, Egypt. J Afr Earth Sci 172:104010. https://doi.org/10.1016/j.jafrearsci.2020.104010
dc.relationMordhorst A, Zimmermann I, Fleige H, Horn R (2022) Environmental risk of (heavy) metal release from urns into cemetery soils. Sci Total Environ 152952. https://doi.org/10.1016/j.scitotenv.2022. 152952
dc.relationMorillas H, Marcaida I, Maguregui M, Upasen S, Gallego-Cartagena E, Madariaga JM (2019) Identifcation of metals and metalloids as hazardous elements in PM2.5 and PM10 collected in a coastal environment afected by difuse contamination. J Clean Prod 226:369–378. https://doi.org/10.1016/j.jclepro.2019.04.063
dc.relationNag R, Cummins E (2022) Human health risk assessment of lead (Pb) through the environmental-food pathway. Sci Total Environ 151168. https://doi.org/10.1016/j.scitotenv.2021.151168
dc.relationNeckel A, Korcelski C, Kujawa HA, Schaefer da Silva I, Prezoto F, Walker Amorin AL, Maculan LS, Gonçalves AC, Bodah ET, Bodah BW, Dotto GL, Silva LFO (2021) Hazardous elements in the soil of urban cemeteries; constructive solutions aimed at sustainability. Chemosphere 262:128248. https://doi.org/10.1016/j. chemosphere.2020.128248
dc.relationNeckel A, Korcelski C, Silva LFO, Kujawa HA, Bodah BW, Figueiredo AMR, Maculan LS, Gonçalves AC, Bodah ET, Moro LD (2021b) Metals in the soil of urban cemeteries in Carazinho (South Brazil) in view of the increase in deaths from COVID-19: projects for cemeteries to mitigate environmental impacts. Environ Dev Sustain 1–24. https://doi.org/10.1007/s10668-021-01879-y
dc.relationNetto LG, Filho WM, Moreira CA, Donato FT, Helene LPI (2021) Delineation of necroleachate pathways using electrical resistivity tomography (ERT): case study on a cemetery in Brazil. Environ Chall 5:100344. https://doi.org/10.1016/j.envc.2021.100344
dc.relationOlanrewaju OI, Kineber AF, Chileshe N, Edwards DJ (2022) Modelling the relationship between Building Information Modelling (BIM) implementation barriers, usage and awareness on building project lifecycle. Build Environ 207:108556. https://doi.org/10. 1016/j.buildenv.2021.108556
dc.relationPavan MRA, Block MS, Zempulski HC, Miyazawa MI, Zocoler DC (1992) Manual of soil chemical analysis and quality control. Londrina, IAPAR, pp 40 Rae RA (2021) Cemeteries as public urban green space: management, funding and form. Urban For Urban Green 61:127078. https://doi. org/10.1016/j.ufug.2021.127078
dc.relationSapyen W, Toonchue S, Praphairaksit N, Imyim A (2022) Selective colorimetric detection of Cr(VI) using starch-stabilized silver nanoparticles and application for chromium speciation. Spectrochim. Acta A Mol Biomol Spectrosc 274:121094. https://doi.org/ 10.1016/j.saa.2022.121094
dc.relationSilva LF, Oliveira ML, Neckel A, Maculan LS, Milanes CB, Bodah BW, Cambrussi LP, Dotto GL (2022) Efects of atmospheric pollutants on human health and deterioration of medieval historical architecture (North Africa, Tunisia). Urban Clim 41:101046. https://doi.org/10.1016/j.uclim.2021.101046
dc.relationShangguan Y, Zhuang X, Querol X, Li B, Moreno N, Trechera P, Sola PC, Uzu G, Li J (2022) Characterization of deposited dust and its respirable fractions in underground coal mines: implications for oxidative potential-driving species and source apportionment. Int J Coal Geol 258:104017. https://doi.org/10.1016/j.coal.2022.104017
dc.relationTack FMG, Meers E (2010) Assisted phytoextraction: helping plants to help us. Elements 6(6):383–388. https://doi.org/10.2113/gsele ments.6.6.383
dc.relationTan T, Chen K, Xue F, Lu W (2019) Barriers to Building Information Modeling (BIM) implementation in China’s prefabricated construction: an interpretive structural modeling (ISM) approach. J Clean Prod 219:949–959. https://doi.org/10.1016/j.jclepro.2019.02.141
dc.relationTan Y, Li G, Cai R, Ma J, Wang M (2022) Mapping and modelling defect data from UAV captured images to BIM for building external wall inspection. Autom Constr 139:104284. https://doi.org/10. 1016/j.autcon.2022.104284
dc.relationTareen ADK, Nadeem MSA, Kearfott KJ, Abbas K, Khawaja MA, Rafque M (2019) Descriptive analysis and earthquake prediction using boxplot interpretation of soil radon time series data. Appl Radiat Isot 154:108861. https://doi.org/10.1016/j.apradiso. 2019.108861
dc.relationTarnik MG, Ghafari S, Bahraini T, SadoghiYazdi H (2020) Minimum variance based-Bayes combination for prediction of soil properties on Vis-NIR refectance spectroscopy. Chemom Intell Lab Syst 207:104194. https://doi.org/10.1016/j.chemolab.2020.104194
dc.relationToscan PC, Neckel A, Maculan LS, Korcelski C, Oliveira MLS, Bodah ET, Bodah BW, Kujawa HA, Gonçalves AC (2022) Use of geospatial tools to predict the risk of contamination by SARS-CoV-2 in urban cemeteries. Geosci Front 101310. https://doi.org/10.1016/j. gsf.2021.101310
dc.relationVega AS, Arce G, Rivera JI, Acevedo SE, Reyes-Paecke S, Bonilla CA, Pastén P (2022) A comparative study of soil metal concentrations in Chilean urban parks using four pollution indexes. J Appl Geochem 105230. https://doi.org/10.1016/j.apgeochem.2022.105230
dc.relationWang Q, Hao D, Wang F, Wang H, Huang X, Li F, Li C, Yu H (2021) Development of a new framework to estimate the environmental risk of heavy metal(loid)s focusing on the spatial heterogeneity of the industrial layout. Environ Int 147:106315. https://doi.org/ 10.1016/j.envint.2020.106315
dc.relationWang W, Wu X, Zhao X, Zhou X (2020) Quantile regression for panel count data based on quadratic inference functions. J Stat Plan Inference 207:230–245. https://doi.org/10.1016/j.jspi.2019.12.005
dc.relationWang X, Fernandes De Souza M, Li H, Tack FM, Ok YS, Meers E (2021) Zn phytoextraction and recycling of alfalfa biomass as potential Zn-biofortifed feed crop. Sci Total Environ 760:143424. https://doi.org/10.1016/j.scitotenv.2020.143424
dc.relationWang X, Fernandes De Souza M, Mench MJ, Li H, Ok YS, Tack FM, Meers E (2022) Cu phytoextraction and biomass utilization as essential trace element feed supplements for livestock. Environ Pollut 294:118627. https://doi.org/10.1016/j.envpol.2021.118627
dc.relationWelz B, Sperling M (2008) Atomic absorption spectrometry, 3rd edn. Wiley-VCH, New York, Weinheim
dc.relationYang H, Yang X, Ning Z, Kwon SY, Li ML, Tack FM, Kwon EE, Rinklebe J, Yin R (2022) The benefcial and hazardous efects of selenium on the health of the soil-plant-human system: an overview. J Hazard Mater 422:126876. https://doi.org/10.1016/j.jhazm at.2021.126876
dc.relationZhang N, Zhang J, Chen W, Su J (2022) Block-based variations in the impact of characteristics of urban functional zones on the urban heat island efect: a case study of Beijing. Sustain Cities Soc 76:103529. https://doi.org/10.1016/j.scs.2021.103529
dc.relation50689
dc.relation50675
dc.relation30
dc.rights© 2023 Springer Nature
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://link.springer.com/article/10.1007/s11356-023-25891-z
dc.subjectCemetery’s soils
dc.subjectMetallic contaminants
dc.subjectNon-metallic elements
dc.subjectTechnical solutions
dc.subjectVertical cemetery
dc.titleHazardous elements in urban cemeteries and possible architectural design solutions for a more sustainable environment
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución