dc.creator | Clemente-Suárez, Vicente Javier | |
dc.creator | Hormeño-Holgado, Alberto | |
dc.creator | Jiménez, Manuel | |
dc.creator | Benitez Agudelo, Juan Camilo | |
dc.creator | Navarro Jiménez, Eduardo | |
dc.creator | Pérez Palencia, Natalia | |
dc.creator | Maestre-Serrano, Ronald | |
dc.creator | Laborde Cardenas, Carmen Cecilia | |
dc.creator | Tornero-Aguilera, Jose Francisco | |
dc.date | 2021-01-28T22:20:05Z | |
dc.date | 2021-01-28T22:20:05Z | |
dc.date | 2020 | |
dc.date.accessioned | 2023-10-03T19:43:51Z | |
dc.date.available | 2023-10-03T19:43:51Z | |
dc.identifier | https://hdl.handle.net/11323/7796 | |
dc.identifier | 10.3390/vaccines8020236 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9171841 | |
dc.description | The novel Coronavirus 2 Severe Acute Respiratory Syndrome (SARS-Cov-2) has led to the Coronavirus Disease 2019 (COVID-19) pandemic, which has surprised health authorities around the world, quickly producing a global health crisis. Different actions to cope with this situation are being developed, including confinement, different treatments to improve symptoms, and the creation of the first vaccines. In epidemiology, herd immunity is presented as an area that could also solve this new global threat. In this review, we present the basis of herd immunology, the dynamics of infection transmission that induces specific immunity, and how the application of immunoepidemiology and herd immunology could be used to control the actual COVID-19 pandemic, along with a discussion of its effectiveness, limitations, and applications. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | 1. Topley W.W.C., Wilson G.S. The spread of bacterial infection. The problem of herd-immunity. Epidemiol. Infect. 1923;21:243–249. doi: 10.1017/S0022172400031478 | |
dc.relation | 2. Fine P.E. Herd immunity: History, theory, practice. Epidemiol. Rev. 1993;15:265–302. doi: 10.1093/oxfordjournals.epirev.a036121. | |
dc.relation | 3. Fine P., Eames K., Heymann D.L. “Herd immunity”: A rough guide. Clin. Infect. Dis. 2011;52:911–916. doi: 10.1093/cid/cir007. | |
dc.relation | 4. Rashid H., Khandaker G., Booy R. Vaccination and herd immunity: What more do we know? Curr. Opin. Infect Dis. 2012;25:243–249. doi: 10.1097/QCO.0b013e328352f727. | |
dc.relation | 5. Smith D.R. Herd Immunity. Vet. Clin. Pract. 2019;35:593–604. doi: 10.1016/j.cvfa.2019.07.001 | |
dc.relation | 6. Goncalves G. Herd immunity: Recent uses in vaccine assessment. Expert Rev. Vaccines. 2008;7:1493–1506. doi: 10.1586/14760584.7.10.1493 | |
dc.relation | 7. Korppi M. Universal pneumococcal vaccination provides marked indirect beneficial effects through herd immunity. Acta Paediatr. 2018;107:1488–1489. doi: 10.1111/apa.14379. | |
dc.relation | 8. Nymark L.S., Sharma T., Miller A., Enemark U., Griffiths U.K. Inclusion of the value of herd immunity in economic evaluations of vaccines. A systematic review of methods used. Vaccine. 2017;35:6828–6841. doi: 10.1016/j.vaccine.2017.10.024. | |
dc.relation | 9. Ali M., Emch M., Von Seidlein L., Yunus M., Sack D.A., Rao M., Holmgren J., Clemens J.D. Herd immunity conferred by killed oral cholera vaccines in Bangladesh: A reanalysis. Lancet. 2005;366:44–49. doi: 10.1016/S0140-6736(05)66550-6. | |
dc.relation | 10. Kinoshita R., Nishiura H. Assessing herd immunity against rubella in Japan: A retrospective seroepidemiological analysis of age-dependent transmission dynamics. BMJ Open. 2016:6. doi: 10.1136/bmjopen-2015-009928. | |
dc.relation | 11. Smith D., Huynh C., Moore A.J., Frick A., Anderson C., Porrachia M., Scott B., Stous S., Schooley R., Little S., et al. Herd Immunity Likely Protected the Men Who Have Sex With Men in the Recent Hepatitis A Outbreak in San Diego, California. Clin. Infect. Dis. 2019;68:1228–1230. doi: 10.1093/cid/ciy592 | |
dc.relation | 12. Maver P.J., Poljak M. Progress in prophylactic human papillomavirus (HPV) vaccination in 2016: A literature review. Vaccine. 2018;36:5416–5423. doi: 10.1016/j.vaccine.2017.07.113 | |
dc.relation | 13. LeBlanc J.J., ElSherif M., Ye L., MacKinnon-Cameron D., Ambrose A., Hatchette T.F., Lang A.L.S., Gillis H.D., Martin I., Demczuk W., et al. Streptococcus pneumoniae serotype 3 is masking PCV13-mediated herd immunity in Canadian adults hospitalized with community acquired pneumonia: A study from the Serious Outcomes Surveillance (SOS) Network of the Canadian immunization research Network (CIRN) Vaccine. 2019;37:5466–5473. doi: 10.1016/j.vaccine.2019.05.003. | |
dc.relation | 14. Payne P., Geyrhofer L., Barton N.H., Bollback J.P. CRISPR-based herd immunity can limit phage epidemics in bacterial populations. eLife. 2018;7:e32035. doi: 10.7554/eLife.32035. | |
dc.relation | 15. Albuquerque I.G.C.D., Marandino R., Mendonça A.P., Nogueira R.M.R., Vasconcelos P.F.D.C., Guerra L.R., Brandão B.C., Mendonça A.P., Aguiar G.R., Bacco P.A. Chikungunya virus infection: Report of the first case diagnosed in Rio de Janeiro, Brazil. Rev. Soc. Bras. Med. Trop. 2012;45:128–129. doi: 10.1590/S0037-86822012000100026. | |
dc.relation | 16. Kwok K.O., Lai F., Wei W.I., Wong S.Y.S., Tang J.W. Herd immunity–estimating the level required to halt the COVID-19 epidemics in affected countries. J. Infect. 2020;80:e32–e33. doi: 10.1016/j.jinf.2020.03.027. | |
dc.relation | 17. Fox J.P., Elveback L., Scott W., Gatewood L., Ackerman E. Herd immunity: Basic concept and relevance to public health immunization practices. Am. J. Epidemiol. 1971;94:179–189. doi: 10.1093/oxfordjournals.aje.a121310. | |
dc.relation | 18. Singhal T. A review of coronavirus disease-2019 (COVID-19) Indian J. Pediatr. 2020;87 doi: 10.1007/s12098-020-03263-6. | |
dc.relation | 19. Peng X., Xu X., Li Y., Cheng L., Zhou X., Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int. J. Oral Sci. 2020;12:9. doi: 10.1038/s41368-020-0075-9. | |
dc.relation | 20. Yeo C., Kaushal S., Yeo D. Enteric involvement of coronaviruses: Is faecal–oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol. Hepatol. 2020;5:335–337. doi: 10.1016/S2468-1253(20)30048-0. | |
dc.relation | 21. Qiao J. What are the risks of COVID-19 infection in pregnant women? Lancet. 2020;395:760–762. doi: 10.1016/S0140-6736(20)30365-2. | |
dc.relation | 22. Zhou G., Zhao Q. Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int. J. Biol. Sci. 2020;16:1718. doi: 10.7150/ijbs.45123. | |
dc.relation | 23. Xun J., Lu L., Jiang S., Lu H., Wen Y., Huang J. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered 2 patient cohort and their implications. Medrxiv. 2020 doi: 10.1101/2020.03.30.20047365. | |
dc.relation | 24. Wu Y., Guo C., Tang L., Hong Z., Zhou J., Dong X., Yin H., Xiao Q., Tang Y., Qu X., et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 2020;5:434–435. doi: 10.1016/S2468-1253(20)30083-2. | |
dc.relation | 25. Wu J.T., Leung K., Bushman M., Kishore N., Niehus R., de Salazar P.M., Cowling B.J., Lipsitch M., Leung G.M. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 2020;26:506–510. doi: 10.1038/s41591-020-0822-7. | |
dc.relation | 26. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7. | |
dc.relation | 27. Mizumoto K., Kagaya K., Zarebski A., Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020;25:2000180. doi: 10.2807/1560-7917.ES.2020.25.10.2000180. | |
dc.relation | 28. Benvenuto D., Giovanetti M., Vassallo L., Angeletti S., Ciccozzi M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Brief. 2020;29:105340. doi: 10.1016/j.dib.2020.105340. | |
dc.relation | 29. Read J.M., Bridgen J.R., Cummings D.A., Ho A., Jewell C.P. Novel coronavirus 2019-nCoV: Early estimation of epidemiological parameters and epidemic predictions. Medrxiv. 2020 doi: 10.1101/2020.01.23.20018549. | |
dc.relation | 30. Wang H., Wang Z., Dong Y., Chang R., Xu C., Yu X., Zhang S., Tsamlag L., Shang M., Huang J., et al. Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China. Cell Discov. 2020;6:10. doi: 10.1038/s41421-020-0148-0 | |
dc.relation | 31. Tang B., Bragazzi N.L., Li Q., Tang S., Xiao Y., Wu J. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov) Infect. Dis. Model. 2020;5:248–255. doi: 10.1016/j.idm.2020.02.001. | |
dc.relation | 32. Chen T.M., Rui J., Wang Q.P., Zhao Z.Y., Cui J.A., Yin L. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect. Dis. Poverty. 2020;9:24. doi: 10.1186/s40249-020-00640-3 | |
dc.relation | 33. Liu Y., Gayle A.A., Wilder-Smith A., Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 2020;27:taaa021. doi: 10.1093/jtm/taaa021. | |
dc.relation | 34. Randolph H.E., Barreiro L.B. Herd Immunity: Understanding COVID-19. Cell Press. 2020 doi: 10.1016/j.immuni.2020.04.012. | |
dc.relation | 35. Shim E., Tariq A., Choi W., Lee Y., Chowell G. Transmission potential and severity of COVID-19 in South Korea. Int. J. Infect. Dis. 2020;93:339–344. doi: 10.1016/j.ijid.2020.03.031. | |
dc.relation | 36. Adhikari S.P., Meng S., Wu Y.J., Mao Y.P., Ye R.X., Wang Q.Z., Sun C., Sylvia S., Rozelle S., Raat H., et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty. 2020;9:29. doi: 10.1186/s40249-020-00646-x. | |
dc.relation | 37. Shang W., Yang Y., Rao Y., Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. npj Vaccines. 2020;5:18. doi: 10.1038/s41541-020-0170-0. | |
dc.relation | 38. Surveillances V. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China, 2020. China CDC Wkly. 2020;2:113–122. | |
dc.relation | 39. WHO Characterizes COVID-19 as a Pandemic. [(accessed on 15 May 2020)];2020 Available online: https://www.paho.org/hq/index.php?option=com_content&view=article&id=15756&Itemid=39630&lang=en. | |
dc.relation | 40. Foddai A., Lindberg A., Lubroth J., Ellis-Iversen J. Surveillance to improve evidence for community control decisions during the COVID-19 pandemic–opening the animal epidemic toolbox for public health. One Health. 2020;9:100130. doi: 10.1016/j.onehlt.2020.100130. | |
dc.relation | 41. de Lusignan S., Bernal J.L., Zambon M., Akinyemi O., Amirthalingam G., Andrews N., Borrow R., Byford R., Charlett A., Dabrera G., et al. Emergence of a novel coronavirus (COVID-19): Protocol for extending surveillance used by the Royal College of general practitioners research and surveillance centre and public health England. JMIR Public Health Surveill. 2020;6:e18606. doi: 10.2196/18606. | |
dc.relation | 42. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239–1242. doi: 10.1001/jama.2020.2648. | |
dc.relation | 43. Tufan Z.K., Kayaaslan B. Crushing the curve, the role of national and international institutions and policy makers in COVID-19 pandemic. Turk. J. Med. Sci. 2020;50:495–508. doi: 10.3906/sag-2004-167 | |
dc.relation | 44. Fang Y., Zhang H., Xie J., Lin M., Ying L., Pang P., Ji W. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology. 2020:200432. doi: 10.1148/radiol.2020200432. | |
dc.relation | 45. Li W., Yang Y., Liu Z.H., Zhao Y.J., Zhang Q., Zhang L., Cheung T., Xiang Y.-T. Progression of Mental Health Services during the COVID-19 Outbreak in China. Int. J. Biol. Sci. 2020;16:1732–1738. doi: 10.7150/ijbs.45120 | |
dc.relation | 46. World Health Organization . Operational Considerations for COVID-19 Surveillance Using GISRS: Interim Guidance, 26 March 2020 (No. WHO/2019-nCoV/Leveraging_GISRS/2020.1) World Health Organization; Geneva, Switzerland: 2020 | |
dc.relation | 47. Srivastava N., Baxi P., Ratho R.K., Saxena S.K. Coronavirus Disease 2019 (COVID-19) Springer; Singapore: 2020. Global Trends in Epidemiology of Coronavirus Disease 2019 (COVID-19) | |
dc.relation | 48. Peng F., Tu L., Yang Y., Hu P., Wang R., Hu Q., Cao F., Jiang T., Sun J., Xu G., et al. Management and Treatment of COVID-19: The Chinese Experience. Can. J. Cardiol. 2020 doi: 10.1016/j.cjca.2020.04.010. | |
dc.relation | 49. Li L., Qin L., Xu Z., Yin Y., Wang X., Kong B., Bai J., Lu Y., Fang Z., Song Q., et al. Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct. Radiology. 2020:200905. doi: 10.1148/radiol.2020200905 | |
dc.relation | 50. Biswas M.H.A., Paiva L.T., De Pinho M.D.R. A SEIR model for control of infectious diseases with constraints. Math. Biosci. Eng. 2014;11:761–784. doi: 10.3934/mbe.2014.11.761. | |
dc.relation | 51. Herrmann H.A., Schwartz J.M. Using network science to propose strategies for effectively dealing with pandemics: The COVID-19 example. medRxiv. 2020 doi: 10.1101/2020.04.02.20050468. | |
dc.relation | 52. Fresnadillo-Martínez M.J., Garcia-Sanchez E., Garcia-Merino E., García-Sánchez J.E. Mathematical modelling of the propagation of infectious diseases: Where we came from, and where we are going. Rev. Esp. Quim. 2013;26:81–91. | |
dc.relation | 53. Sambala E.Z., Manderson L. Policy perspectives on post pandemic influenza vaccination in Ghana and Malawi. BMC Public Health. 2017;17:227. doi: 10.1186/s12889-017-4058-5 | |
dc.relation | 54. Garnett G.P. Role of herd immunity in determining the effect of vaccines against sexually transmitted disease. J. Infect. Dis. 2005;191:S97–S106. doi: 10.1086/425271. | |
dc.relation | 55. Zhan C., Chi K.T., Lai Z., Chen X., Mo M. General Model for COVID-19 Spreading with Consideration of Intercity Migration, Insufficient Testing and Active Intervention: Application to Study of Pandemic Progression in Japan and USA. medRxiv. 2020 doi: 10.1101/2020.03.25.20043380. | |
dc.relation | 56. Flaxman S., Mishra S., Gandy A., Unwin H., Coupland H., Mellan T., Zhu H., Berah T., Eaton J., Perez Guzman P., et al. Report 13: Estimating the Number of Infections and the Impact of Non-Pharmaceutical Interventions on COVID-19 in 11 European Countries. Imperial College London; London, UK: 2020. | |
dc.relation | 57. Karin O., Bar-On Y.M., Milo T., Katzir I., Mayo A., Korem Y., Dudovich B., Yashiv E., Zehavi A.J., Davidovich N., et al. Adaptive cyclic exit strategies from lockdown to suppress COVID-19 and allow economic activity. medRxiv. 2020 doi: 10.1101/2020.04.04.20053579. | |
dc.relation | 58. Casadevall A., Pirofski L.A. The convalescent sera option for containing COVID-19. J. Clin. Investig. 2020;130:1545–1548. doi: 10.1172/JCI138003 | |
dc.relation | 59. Walker P.G., Whittaker C., Watson O., Baguelin M., Ainslie K.E.C., Bhatia S., Boonyasiri A., Boyd O., Cattarino L. The Global Impact of covid-19 and Strategies for Mitigation and Suppression. Imperial College of London; London, UK: 2020. | |
dc.relation | 60. The Coalition for Epidemic Preparedness Innovations CEPI welcomes UK Government’s funding and highlights need for $2 billion to develop a vaccine against COVID-19. | |
dc.relation | 61. James A., Hendy S.C., Plank M.J., Steyn N. Suppression and Mitigation Strategies for Control of COVID-19 in New Zealand. medRxiv. 2020 doi: 10.1101/2020.03.26.20044677. | |
dc.relation | 62. Anderson R.M., Heesterbeek H., Klinkenberg D., Hollingsworth T.D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet. 2020;395:931–934. doi: 10.1016/S0140-6736(20)30567-5. | |
dc.relation | 63. Colson P., Rolain J.M., Lagier J.C., Brouqui P., Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int. J. Antimicrob. Agents. 2020;55:105932. doi: 10.1016/j.ijantimicag.2020.105932. | |
dc.relation | 64. Zhang W., Zhao Y., Zhang F., Wang Q., Li T., Liu Z., Wang J., Qin Y., Zhang X., Yan X., et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clin. Immunol. 2020;214:108393. doi: 10.1016/j.clim.2020.108393. | |
dc.relation | 65. Cortegiani A., Ingoglia G., Ippolito M., Giarratano A., Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care. 2020;57:279–283. doi: 10.1016/j.jcrc.2020.03.005. | |
dc.relation | 66. COVID-19 Reinfection Becoming an Issue in China, Strategist Says. | |
dc.relation | 67. Sanche S., Lin Y.T., Xu C., Romero-Severson E., Hengartner N., Ke R. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 2020 doi: 10.3201/eid2607.200282. | |
dc.relation | 68. Armocida B., Formenti B., Ussai S., Palestra F., Missoni E. The Italian health system and the COVID-19 challenge. Lancet Public Health. 2020 doi: 10.1016/S2468-2667(20)30074-8. | |
dc.relation | 69. Worst-Case Estimates for U.S. Coronavirus Deaths. | |
dc.relation | 70. Verity R., Okell L.C., Dorigatti I., Winskill P., Whittaker C., Imai N., Cuomo-Dannenburg G., Thompson H., Walker P.G.T., Fu H., et al. Estimates of the severity of coronavirus disease 2019: A model-based analysis. Lancet Infect Dis. 2020 doi: 10.1016/S1473-3099(20)30243-7 | |
dc.relation | 71. Kissler S.M., Tedijanto C., Goldstein E., Grad Y.H., Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 though the postpandemic period. Science. 2020 doi: 10.1126/science.abb5793. | |
dc.relation | 72. Fang L., Karakiulakis G., Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020;8:e21. doi: 10.1016/S2213-2600(20)30116-8. | |
dc.relation | 73. Rothan H.A., Byrareddy S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020;109:102433. doi: 10.1016/j.jaut.2020.102433. | |
dc.relation | 74. Nasiri M.J., Haddadi S., Tahvildari A., Farsi Y., Arbabi M., Hasanzadeh S., Jamshidi P., Murthi M., Mirsaeidi M. COVID-19 clinical characteristics, and sex-specific risk of mortality: Systematic review and meta-analysis. medRxiv. 2020 doi: 10.1101/2020.03.24.20042903. | |
dc.relation | 75. Bao L., Deng W., Gao H., Xiao C., Liu J., Xue J., Lv Q., Liu J., Yu P., Xu Y., et al. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. bioRxiv. 2020 doi: 10.1101/2020.03.13.990226. | |
dc.relation | 76. Andre F.E., Booy R., Bock H.L. Bulletin of the World Health Organization Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull. World Health Organ. 2008;86:140–146. doi: 10.2471/BLT.07.040089. | |
dc.relation | 77. John T.J., Samuel R. Herd immunity and herd effect: New insights and definitions. Eur. J. Epidemiol. 2000;16:601–606. doi: 10.1023/A:1007626510002. | |
dc.relation | 78. Anderson R.M., May R.M. Vaccination and herd immunity to infectious diseases. Nature. 1985;318:323–329. doi: 10.1038/318323a0. | |
dc.relation | 79. Adegbola R., Secka O., Lahai G., Lloyd-Evans N., Njie A., Usen S., Oluwalana C., Obaro S., Weber M., Corrah T., et al. Elimination of Haemophilus influenzae type b (Hib) disease from the Gambia after introduction of a Hib conjugate vaccine: A prospective study. Lancet. 2005;366:144–150. doi: 10.1016/S0140-6736(05)66788-8. | |
dc.relation | 80. Moulton L.H., Chung S., Croll J., Reid R., Weatherholtz R.C., Santosham M. Estimation of the indirect effect of Haemophilus influenzae type b conjugate vaccine in an American Indian population. Int. J. Epidemiol. 2000;29:753–756. doi: 10.1093/ije/29.4.753. | |
dc.relation | 81. Schlenker T.L., Bain C., Baughman A.L., Hadler S.C. Measles herd immunity: The association of attack rates with immunization rates in preschool children. JAMA. 1992;267:823–826. doi: 10.1001/jama.1992.03480060069032. | |
dc.relation | 82. Hochberg M.E. Importance of suppression and mitigation measures in managing COVID-19 outbreaks. medRxiv. 2020 doi: 10.1101/2020.03.31.20048835. | |
dc.relation | 83. Gautret P., Lagier J.C., Parola P., Hoang V.T., Meddeb L., Mailhe M., Doudier B., Courjon J., Giordanengo V., Vieira V.E., et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents. 2020:105949. doi: 10.1016/j.ijantimicag.2020.105949. | |
dc.relation | 84. Stebbing J., Phelan A., Griffin I., Tucker C., Oechsle O., Smith D., Richardson P. COVID-19: Combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis. 2020;20:400–402. doi: 10.1016/S1473-3099(20)30132-8. | |
dc.relation | 85. Dong L., Hu S., Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19) Drug Discov. Ther. 2020;14:58–60. doi: 10.5582/ddt.2020.01012. | |
dc.relation | 86. Katul G.G., Mrad A., Bonetti S., Manoli G., Parolari A.J. Global convergence of COVID-19 basic reproduction number and estimation from early-time SIR dynamics. medRxiv. 2020 doi: 10.1101/2020.04.10.20060954 | |
dc.relation | 87. Brodin P. Why is COVID-19 so mild in children? Acta Paediatr. 2020;109:1082–1083. doi: 10.1111/apa.15271. | |
dc.relation | 88. Pang J., Wang M.X., Ang I.Y., Tan S.H., Lewis R.F., Chen J.I., Gutierrez R.A., Gwee S.X., Chua P.E., Yang Q., et al. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): A systematic review. J. Clin. Med. 2020;9:623. doi: 10.3390/jcm9030623. | |
dc.relation | 89. Graham R.L., Donaldson E.F., Baric R.S. A decade after SARS: Strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 2013;11:836–848. doi: 10.1038/nrmicro3143. | |
dc.relation | 90. Zhang J., Zeng H., Gu J., Li H., Zheng L., Zou Q. Progress and Prospects on Vaccine Development against SARS-CoV-2. Vaccines. 2020;8:153. doi: 10.3390/vaccines8020153. | |
dc.relation | 91. Benjamin-Chung J., Abedin J., Berger D., Clark A., Jimenez V., Konagaya E., Tran D., Arnold B.F., Hubbard A.E., Luby S.P., et al. Spillover effects on health outcomes in low-and middle-income countries: A systematic review. Int. J. Epidemol. 2017;46:1251–1276. doi: 10.1093/ije/dyx039. | |
dc.relation | 92. Ali M., Qadri F., Kim D.R., Islam T., Im J., Ahmmed F., Chon Y., Islam Khan A., Zaman K., Marks F., et al. Unmasking herd protection by an oral cholera vaccine in a cluster-randomized trial. Int. J. Epidemol. 2019;48:1252–1261. doi: 10.1093/ije/dyz060. | |
dc.relation | 93. Callaway E. Should scientists infect healthy people with the coronavirus to test vaccines? Nature. 2020;580:17. doi: 10.1038/d41586-020-00927-3. | |
dc.relation | 94. Plotkin S.A., Plotkin S.A. Correlates of vaccine-induced immunity. Clin. Infect. Dis. 2008;47:401–409. doi: 10.1086/589862. | |
dc.relation | 95. Callaway E. The race for coronavirus vaccines: A graphical guide. Nature. 2020;580:576. doi: 10.1038/d41586-020-01221-y. | |
dc.relation | 96. Lang P.O., Aspinall R. Immunosenescence and herd immunity: With an ever-increasing aging population do we need to rethink vaccine schedules? Expert Rev. Vaccines. 2012;11:167–176. doi: 10.1586/erv.11.187. | |
dc.relation | 97. Nicola D., Vito M., Linda J.S., Canio B. COVID-19 from veterinary medicine and one health perspectives: What animal coronaviruses have taught us. Res. Vet. Sci. 2020;131:21–23 | |
dc.relation | 98. Del Giudice G., Goronzy J.J., Grubeck-Loebenstein B., Lambert P.H., Mrkvan T., Stoddard J.J., Doherty T.M. Fighting against a protean enemy: Immunosenescence, vaccines, and healthy aging. NPJ Aging Mech. Dis. 2017;4:1. doi: 10.1038/s41514-017-0020-0 | |
dc.relation | 99. Jin Y., Yang H., Ji W., Wu W., Chen S., Zhang W., Duan G. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020;12:372. doi: 10.3390/v12040372. | |
dc.relation | 100. Robson B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput. Biol. Med. 2020;26:103670. doi: 10.1016/j.compbiomed.2020.103670. | |
dc.relation | 101. Ahmed S.F., Quadeer A.A., McKay M.R. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 2020;12:254. doi: 10.3390/v12030254. | |
dc.relation | 102. Colgrove J. Vaccine refusal revisited the limits of public health persuasion and coercion. N. Eng. J. Med. 2016;375:1316–1317. doi: 10.1056/NEJMp1608967. | |
dc.relation | 103. Dudley M.Z., Halsey N.A., Omer S.B., Orenstein W.A., TO’Leary S., Limaye R.J., Salmon D.A. The state of vaccine safety science: Systematic reviews of the evidence. Lancet Infect. Dis. 2020;20:e80–e89. doi: 10.1016/S1473-3099(20)30130-4. | |
dc.relation | 104. Metcalf C.J., Ferrari M., Graham A.L., Grenfell B.T. Understanding herd immunity. Trends Immunol. 2015;36:753–755. doi: 10.1016/j.it.2015.10.004. | |
dc.relation | 105. Betsch C., Böhm R., Korn L., Holtmann C. On the benefits of explaining herd immunity in vaccine advocacy. Nature Hum. Behav. 2017;1:0056. doi: 10.1038/s41562-017-0056. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Vaccines (Basel) | |
dc.source | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349986/ | |
dc.subject | SARS-Cov-2 | |
dc.subject | COVID-19 | |
dc.subject | herd immunology | |
dc.subject | vaccines | |
dc.subject | pandemic | |
dc.subject | epidemiology | |
dc.title | Dynamics of population immunity due to the herd effect in the COVID-19 pandemic | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |