dc.creatorCarvalho, Fernando L.
dc.creatorPinto, Diana
dc.creatorSchio, Rejiane R.
dc.creatordos Santos, Jaqueline P.
dc.creatorKetzer, Felipe
dc.creatorSilva, Luis F.O.
dc.creatorDotto, Guilherme Luiz
dc.date2022-07-07T13:41:58Z
dc.date2023-05-02
dc.date2022-07-07T13:41:58Z
dc.date2022-05-02
dc.date.accessioned2023-10-03T19:43:23Z
dc.date.available2023-10-03T19:43:23Z
dc.identifier0944-1344
dc.identifierhttps://hdl.handle.net/11323/9344
dc.identifierhttps://doi.org/10.1007/s11356-022-20488-4
dc.identifier10.1007/s11356-022-20488-4
dc.identifier1614-7499
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171773
dc.descriptionA real industrial efuent from the pre-treatment and painting processes was polished through adsorption using alternative biochar derived from grape pomace wastes. The biochar was produced in a pilot-scale plant from composted grape pomace. Biochar showed an equilibrium between acidic and basic groups on the surface. The presence of irregular cavities in the structure and mesopores was confrmed by analyzing N2 physisorption and SEM. Concerning the efuent, Ni and Zn were the main problematic elements. The adsorption isotherms and kinetics of Ni and Zn from the efuent using the biochar could be represented by the Henry, pseudo-frst-order, and pseudo-second-order models, respectively. Adsorption equilibrium was reached within 60 min for Ni and Zn present in the real efuent. Besides, the adsorption process was endothermic, favorable, and spontaneous. These results demonstrate that Zn and Ni metals were successfully removed from the industrial efuent, presenting fnal concentration values within the limit of legislation for efuent disposal in agricultural soil.
dc.format11 Páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherSpringer Science + Business Media
dc.publisherGermany
dc.relationEnvironmental Science and Pollution Research
dc.relationAhmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, Ok YS (2012) Efects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544. https://doi.org/10.1016/j. biortech.2012.05.042
dc.relationAl-Lagtah NMA, Al-Muhtaseb AH, Ahmad MNM, Salameh Y (2016) Chemical and physical characteristics of optimal synthesized acti vated carbons from grass-derived sulfonated lignin versus com mercial activated carbon. Micropor Mesopor Mat 225:504–514. https://doi.org/10.1016/j.micromeso.2016.01.043
dc.relationAnirudhan TS, Sreekumari SS (2011) Adsorptive removal of heavy metal ions from industrial efuents using activated carbon derived from waste coconut buttons. J Environ Sci (china) 23:1989–1998. https://doi.org/10.1016/S1001-0742(10)60515-3
dc.relationBilal M, Shah JA, Ashfaq T, Gardazi SMH, Tahir AA, Pervez A, Haroon H, Mahmood Q (2013) Waste biomass adsorbents for cop per removal from industrial wastewater—a review. J Hazard Mater 263:322–333. https://doi.org/10.1016/j.jhazmat.2013.07.071
dc.relationBonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., Duran Valle, C.J. 2019. 1 ed. Adsorption in water treatment. Reference module in chemistry, molecular sciences and chemical engineer ing 1 Elsevier, Amsterdam, pp. 1–21. https://doi.org/10.1016/ B978-0-12-409547-2.14390-2
dc.relationBrezoiu AM, Matei C, Deaconu M, Stanciuc AM, Trifan A, Pin tiliescu AG, Berger D (2019) Polyphenols extract from grape pomace. Characterization and valorisation through encapsula tion into mesoporous silica-type matrices. Food Chem Toxicol 133:110787. https://doi.org/10.1016/j.fct.2019.110787
dc.relationCao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228. https://doi.org/10.1016/j.biortech.2010.02.052
dc.relationCao X, Ma L, Liang Y, Gao B, Harris W (2011) Simultaneous immo bilization of lead and atrazine in contaminated soils using dairy manure biochar. Environ Sci Technol 45:4884–4889. https://doi. org/10.1021/es103752u
dc.relationCasazza AA, Aliakbarian B, Lagazzo A, Garbarino G, Carnasciali MM, Perego P, Busca G (2016) Pyrolysis of grape marc before and after the recovery of polyphenol fraction. Fuel Process Tech nol 153:121–128. https://doi.org/10.1016/j.fuproc.2016.07.014
dc.relationDil EA, Ghaedi M, Asfaram A, Mehrabi F, Sadeghfar F (2019) Ef cient adsorption of azure B onto CNTs/Zn:ZnO@Ni2P-NCs from aqueous solution in the presence of ultrasound wave based on multivariate optimization. J Ind Eng Chem 74:55–62. https://doi. org/10.1016/j.jiec.2018.12.050
dc.relationDotto GL, McKay G (2020) Current scenario and challenges in adsorp tion for water treatment. J Environ Chem Eng 8:103988. https:// doi.org/10.1016/j.jece.2020.103988
dc.relationDotto, G.L., Salau, N.P.G., Piccin, J.S., Cadaval Jr., T.R.S., Pinto, L.A.A. 2017. Adsorption kinetics in liquid phase: modeling for discontinuous and continuous systems, Chapter 3, In: A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila (Eds.), Adsorption processes for water treatment and purifca tion, Springer International Publishing. https://doi.org/10.1007/ 978-3-319-58136-1_3
dc.relationDotto GL, Vieira MLG, Gonçalves JO, Pinto LAA (2011) Removal of acid blue 9, food yellow 3 and fd&c yellow n° 5 dyes from aqueous solutions using activated carbon, activated earth, diato maceous earth, chitin and chitosan: equilibrium studies and ther modynamic. Quím Nova 34:1193–1199. https://doi.org/10.1590/ s0100-40422011000700017
dc.relationFan X, Gao Y, He W, Hu H, Tian M, Wang K, Pan S (2016) Produc tion of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Car bohydr Polym 151:1068–1072. https://doi.org/10.1016/j.carbpol. 2016.06.062
dc.relationFerrari V, Tafarel SR, Espinosa-Fuentes E, Oliveira MLS, Saikia BK, Silva LFO (2019) Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. J Clean Prod 208:297–306. https://doi.org/10.1016/j.jclepro.2018.10.032
dc.relationGeorgin J, de Salomón YIO, Franco DSP, Netto MS, Piccilli DGA, Perondi D, Silva LFO, Foletto EL, Dotto GL (2021) Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen. J Environ Chem Eng 9:105676. https://doi.org/10.1016/j.jece. 2021.105676
dc.relationGonzález-García P (2018) Activated carbon from lignocellulosics pre cursors: a review of the synthesis methods, characterization tech niques and applications. Renew Sust Energ Rev 82:1393–1414. https://doi.org/10.1016/j.rser.2017.04.117
dc.relationGope, M., Saha, R. 2021. Removal of heavy metals from industrial efuents by using biochar, Intelligent Environmental Data Moni toring for Pollution Management, p. 25–48. https://doi.org/10. 1016/B978-0-12-819671-7.00002-6
dc.relationJiang K, Liu K, Peng Q, Zhou M (2021) Adsorption of Pb(II) and Zn(II) ions on humus-like substances modifed montmorillonite. Colloids Surf, A Physicochem Eng Asp 631:127706. https://doi. org/10.1016/j.colsurfa.2021.127706
dc.relationKayalvizhi K, Alhaji NMI, Saravanakkumar D, Mohamed SB, Kavi yarasu K, Ayeshamariam A, Al-Mohaimeed AM, AbdelGawwad MR, Elshikh MS (2022) Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads A kinetic and thermody namic study. Environ Res 203:111814. https://doi.org/10.1016/j. envres.2021.111814
dc.relationLi H, Xiong J, Xiao T, Long J, Wang Q, Li K, Liu X, Zhang G, Zhang H (2019) Biochar derived from watermelon rinds as regenerable adsorbent for efcient removal of thallium(I) from wastewater. Process Saf Environ Prot 257–266. https://doi.org/10.1016/j.psep. 2019.04.031
dc.relationLi ZY, Azi F, Dong JJ, Liu LZ, Ge ZW, Dong MS (2021) Green and efcient in-situ biosynthesis of antioxidant and antibacterial bac terial cellulose using wine pomace. Int J Biol Macromol. https:// doi.org/10.1016/j.ijbiomac.2021.11.049.
dc.relationLima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anasto poulos I (2019) A critical review of the estimation of the ther modynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425– 434. https://doi.org/10.1016/j.molliq.2018.10.048
dc.relationLütke SF, Igansi AV, Pegoraro L, Dotto GL, Pinto LAA, Cadaval Jr TRS (2019) Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J Environ Chem Eng 7:103396. https://doi.org/10.1016/j.jece:2019.103396
dc.relationMulinari DR, Voorwald HJC, Ciof MO, Silva MLCP, Luz SM (2009) Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydr Polym 75:317–321. https://doi.org/10.1016/j.carbpol.2008.07.028
dc.relationNetto MS, Rossato DL, Jahn SL, Mallmann ES, Dotto GL, Foletto EL 2019 Preparation of a novel magnetic geopolymer/zero–valent iron composite with remarkable adsorption performance towards aqueous Acid Red 97. Chem Eng Commun 1048-1061. https:// doi.org/10.1080/00986445.2019.1635467
dc.relationOncel MS, Muhcu A, Demirbas E, Kobya M (2013) A comparative study of chemical precipitation and electrocoagulation for treat ment of coal acid drainage wastewater. J Environ Chem Eng 1:989–995. https://doi.org/10.1016/j.jece.2013.08.008
dc.relationPeng L, Bartzas G 2021 Heavy metals and metalloids: a serious threat to environment and human health. Curr Opin Environ Sci Health Editorial overview, 23, Article 100287. https://doi.org/10.1016/j. coesh.2021.100287
dc.relationPeres EC, Cunha JM, Dortzbacher GF, Pavan FA, Lima EC, Foletto EL, Dotto GL (2018) Treatment of leachates containing cobalt by adsorption on Spirulina sp. and activated charcoal. J Environ Chem Eng 6:677–685. https://doi.org/10.1016/j.jece.2017.12.060
dc.relationPiccin JS, Cadaval Jr., TRS, Pinto LAA, Dotto GL 2017 Adsorption isotherms in liquid phase: experimental, modeling, and interpreta tions, Chapter 2, in: A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila (Eds.), Adsorption processes for water treat ment and purifcation, Springer International Publishing. Adsorp tion. https://doi.org/10.1007/978-3-319-58136-1_2
dc.relationPigatto RS, Franco DSP, Netto MS, Carissimi É, Oliveira LFS, Jahn SL, Dotto GL 2020 An eco-friendly and low-cost strategy for groundwater defuorination: adsorption of fuoride onto calcinated sludge. J Environ Chem Eng Article 104546. https://doi.org/10. 1016/j.jece.2020.104546
dc.relationRathi BS, Kumar PS 2021 Application of adsorption process for efec tive removal of emerging contaminants from water and wastewa ter. Environ Pollut 280, Article 116995. https://doi.org/10.1016/j. envpol.2021.116995
dc.relationRosa SMC, Nossol ABS, Nossol E, Zarbin AJG, Zamora PGP 2017 Non-synergistic UV-A photocatalytic degradation of estrogens by nano-TiO2 supported on activated carbon. J Braz Chem Soc 28.https://doi.org/10.5935/0103-5053.20160201
dc.relationRossato DL, Netto MS, Jahn SL, Mallman ES, Dotto GL, Foletto EL (2020) Highly efcient adsorption performance of a novel mag netic geopolymer/Fe3O4 composite towards removal of aqueous acid green 16 dye. J Environ Chem Eng 8:103804. https://doi.org/ 10.1016/j.jece.2020.103804
dc.relationRoy A, Bharadvaja N (2021) Efcient removal of heavy metals from artifcial wastewater using biochar. Environ Nanotechnol Monit Manag. https://doi.org/10.1016/j.enmm.2021.100602
dc.relationSantos DCD, Adebayo MA, Lima EC, Pereira SFP, Cataluña R, Saucier C, Thue PS, Machado FM (2015) Application of carbon com posite adsorbents prepared from cofee waste and clay for the removal of reactive dyes from aqueous solutions. J Braz Chem Soc 26:924–938. https://doi.org/10.5935/0103-5053.20150053
dc.relationSardella F, Gimenez M, Navas C, Morandi C, Deiana C, Sapang K (2015) Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium. J Environ Chem Eng 3:253–260. https://doi.org/10.1016/j.jece.2014.06.026
dc.relationShao L, Ren Z, Zhang G, Chen L (2012) Facile synthesis, charac terization of a MnFe 2O 4/activated carbon magnetic composite and its efectiveness in tetracycline removal. Mater Chem Phys 135:16–24. https://doi.org/10.1016/j.matchemphys.2012.03.035
dc.relationSilva NF, Netto MS, Silva LFO, Mallmann ES, Lima EC, Ferrari V, Dotto GL (2021) Composite carbon materials from winery com posted waste for the treatment of efuents contaminated with keto profen and 2-nitrophenol. J Environ Chem Eng 9:105421. https:// doi.org/10.1016/j.jece.2021.105421
dc.relationSing KSW, Everett DH, Haul RAW, Moscou L, Pieroti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/ solid systems with special reference to the determination of sur face area and porosity. Pure Appl Chem 57:603–619. https://doi. org/10.1351/pac198557040603
dc.relationStreit AFM, Collazzo GC, Druzian SP, Verdi RS, Foletto EL, Oliveira LFS, Dotto GL (2021) Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from efuent treatment plant sludge of the beverage industry. Chemosphere 262:128322. https://doi.org/10.1016/j.chemosphere.2020.128322
dc.relationTang SH, Ahmad Zaini MA (2020) Development of activated car bon pellets using a facile low-cost binder for efective malachite green dye removal. J Cleaner Prod 253:119970. https://doi.org/ 10.1016/j.jclepro.2020.119970
dc.relationTareq R, Akter N, Azam MDS 2019 Biochars and biochar composites: low-cost adsorbents for environmental remediation. Biochar Bio mass Waste 169-209. https://doi.org/10.1016/B978-0-12-811729- 3.00010-8
dc.relationVilvanathan S, Shanthakumar S 2015 Biosorption of Co(II) ions from aqueous solution using Chrysanthemum indicum: kinet ics, equilibrium and thermodynamics, Process Saf Environ Prot 98-110. https://doi.org/10.1016/j.psep.2015.05.001
dc.relationYang Q, Meng X, Zhao H, Cao C, Liu Y, Huisingh D (2021) Sustain able operations-oriented painting process optimisation in automo bile maintenance service. J Clean Prod 324:129191. https://doi. org/10.1016/j.jclepro.2021.129191
dc.relationZhou G, Liu C, Chu L, Tang Y, Luo S (2016) Rapid and efcient treat ment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process. Bioresour Tech nol 219:451–457. https://doi.org/10.1016/j.biortech.2016.07.038
dc.relation11
dc.relation1
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rights© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://link.springer.com/article/10.1007/s11356-022-20488-4?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot
dc.subjectGrape pomace biochar
dc.subjectEfuent
dc.subjectMetal removal
dc.subjectAdsorption
dc.titlePolishing of painting process effluents through adsorption with biochar from winemaking residues
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución