dc.creator | Carvalho, Fernando L. | |
dc.creator | Pinto, Diana | |
dc.creator | Schio, Rejiane R. | |
dc.creator | dos Santos, Jaqueline P. | |
dc.creator | Ketzer, Felipe | |
dc.creator | Silva, Luis F.O. | |
dc.creator | Dotto, Guilherme Luiz | |
dc.date | 2022-07-07T13:41:58Z | |
dc.date | 2023-05-02 | |
dc.date | 2022-07-07T13:41:58Z | |
dc.date | 2022-05-02 | |
dc.date.accessioned | 2023-10-03T19:43:23Z | |
dc.date.available | 2023-10-03T19:43:23Z | |
dc.identifier | 0944-1344 | |
dc.identifier | https://hdl.handle.net/11323/9344 | |
dc.identifier | https://doi.org/10.1007/s11356-022-20488-4 | |
dc.identifier | 10.1007/s11356-022-20488-4 | |
dc.identifier | 1614-7499 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9171773 | |
dc.description | A real industrial efuent from the pre-treatment and painting processes was polished through adsorption using alternative
biochar derived from grape pomace wastes. The biochar was produced in a pilot-scale plant from composted grape pomace.
Biochar showed an equilibrium between acidic and basic groups on the surface. The presence of irregular cavities in the
structure and mesopores was confrmed by analyzing N2 physisorption and SEM. Concerning the efuent, Ni and Zn were
the main problematic elements. The adsorption isotherms and kinetics of Ni and Zn from the efuent using the biochar could
be represented by the Henry, pseudo-frst-order, and pseudo-second-order models, respectively. Adsorption equilibrium was
reached within 60 min for Ni and Zn present in the real efuent. Besides, the adsorption process was endothermic, favorable,
and spontaneous. These results demonstrate that Zn and Ni metals were successfully removed from the industrial efuent,
presenting fnal concentration values within the limit of legislation for efuent disposal in agricultural soil. | |
dc.format | 11 Páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Springer Science + Business Media | |
dc.publisher | Germany | |
dc.relation | Environmental Science and Pollution Research | |
dc.relation | Ahmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, Ok YS
(2012) Efects of pyrolysis temperature on soybean stover- and
peanut shell-derived biochar properties and TCE adsorption in
water. Bioresour Technol 118:536–544. https://doi.org/10.1016/j.
biortech.2012.05.042 | |
dc.relation | Al-Lagtah NMA, Al-Muhtaseb AH, Ahmad MNM, Salameh Y (2016)
Chemical and physical characteristics of optimal synthesized acti vated carbons from grass-derived sulfonated lignin versus com mercial activated carbon. Micropor Mesopor Mat 225:504–514.
https://doi.org/10.1016/j.micromeso.2016.01.043 | |
dc.relation | Anirudhan TS, Sreekumari SS (2011) Adsorptive removal of heavy
metal ions from industrial efuents using activated carbon derived
from waste coconut buttons. J Environ Sci (china) 23:1989–1998.
https://doi.org/10.1016/S1001-0742(10)60515-3 | |
dc.relation | Bilal M, Shah JA, Ashfaq T, Gardazi SMH, Tahir AA, Pervez A,
Haroon H, Mahmood Q (2013) Waste biomass adsorbents for cop per removal from industrial wastewater—a review. J Hazard Mater
263:322–333. https://doi.org/10.1016/j.jhazmat.2013.07.071 | |
dc.relation | Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., Duran Valle, C.J. 2019. 1 ed. Adsorption in water treatment. Reference
module in chemistry, molecular sciences and chemical engineer ing 1 Elsevier, Amsterdam, pp. 1–21. https://doi.org/10.1016/
B978-0-12-409547-2.14390-2 | |
dc.relation | Brezoiu AM, Matei C, Deaconu M, Stanciuc AM, Trifan A, Pin tiliescu AG, Berger D (2019) Polyphenols extract from grape
pomace. Characterization and valorisation through encapsula tion into mesoporous silica-type matrices. Food Chem Toxicol
133:110787. https://doi.org/10.1016/j.fct.2019.110787 | |
dc.relation | Cao X, Harris W (2010) Properties of dairy-manure-derived biochar
pertinent to its potential use in remediation. Bioresour Technol
101:5222–5228. https://doi.org/10.1016/j.biortech.2010.02.052 | |
dc.relation | Cao X, Ma L, Liang Y, Gao B, Harris W (2011) Simultaneous immo bilization of lead and atrazine in contaminated soils using dairy manure biochar. Environ Sci Technol 45:4884–4889. https://doi.
org/10.1021/es103752u | |
dc.relation | Casazza AA, Aliakbarian B, Lagazzo A, Garbarino G, Carnasciali
MM, Perego P, Busca G (2016) Pyrolysis of grape marc before
and after the recovery of polyphenol fraction. Fuel Process Tech nol 153:121–128. https://doi.org/10.1016/j.fuproc.2016.07.014 | |
dc.relation | Dil EA, Ghaedi M, Asfaram A, Mehrabi F, Sadeghfar F (2019) Ef cient adsorption of azure B onto CNTs/Zn:ZnO@Ni2P-NCs from
aqueous solution in the presence of ultrasound wave based on
multivariate optimization. J Ind Eng Chem 74:55–62. https://doi.
org/10.1016/j.jiec.2018.12.050 | |
dc.relation | Dotto GL, McKay G (2020) Current scenario and challenges in adsorp tion for water treatment. J Environ Chem Eng 8:103988. https://
doi.org/10.1016/j.jece.2020.103988 | |
dc.relation | Dotto, G.L., Salau, N.P.G., Piccin, J.S., Cadaval Jr., T.R.S., Pinto,
L.A.A. 2017. Adsorption kinetics in liquid phase: modeling
for discontinuous and continuous systems, Chapter 3, In: A.
Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila
(Eds.), Adsorption processes for water treatment and purifca tion, Springer International Publishing. https://doi.org/10.1007/
978-3-319-58136-1_3 | |
dc.relation | Dotto GL, Vieira MLG, Gonçalves JO, Pinto LAA (2011) Removal
of acid blue 9, food yellow 3 and fd&c yellow n° 5 dyes from
aqueous solutions using activated carbon, activated earth, diato maceous earth, chitin and chitosan: equilibrium studies and ther modynamic. Quím Nova 34:1193–1199. https://doi.org/10.1590/
s0100-40422011000700017 | |
dc.relation | Fan X, Gao Y, He W, Hu H, Tian M, Wang K, Pan S (2016) Produc tion of nano bacterial cellulose from beverage industrial waste
of citrus peel and pomace using Komagataeibacter xylinus. Car bohydr Polym 151:1068–1072. https://doi.org/10.1016/j.carbpol.
2016.06.062 | |
dc.relation | Ferrari V, Tafarel SR, Espinosa-Fuentes E, Oliveira MLS, Saikia
BK, Silva LFO (2019) Chemical evaluation of by-products of the
grape industry as potential agricultural fertilizers. J Clean Prod
208:297–306. https://doi.org/10.1016/j.jclepro.2018.10.032 | |
dc.relation | Georgin J, de Salomón YIO, Franco DSP, Netto MS, Piccilli DGA,
Perondi D, Silva LFO, Foletto EL, Dotto GL (2021) Development
of highly porous activated carbon from Jacaranda mimosifolia
seed pods for remarkable removal of aqueous-phase ketoprofen.
J Environ Chem Eng 9:105676. https://doi.org/10.1016/j.jece.
2021.105676 | |
dc.relation | González-García P (2018) Activated carbon from lignocellulosics pre cursors: a review of the synthesis methods, characterization tech niques and applications. Renew Sust Energ Rev 82:1393–1414.
https://doi.org/10.1016/j.rser.2017.04.117 | |
dc.relation | Gope, M., Saha, R. 2021. Removal of heavy metals from industrial
efuents by using biochar, Intelligent Environmental Data Moni toring for Pollution Management, p. 25–48. https://doi.org/10.
1016/B978-0-12-819671-7.00002-6 | |
dc.relation | Jiang K, Liu K, Peng Q, Zhou M (2021) Adsorption of Pb(II) and
Zn(II) ions on humus-like substances modifed montmorillonite.
Colloids Surf, A Physicochem Eng Asp 631:127706. https://doi.
org/10.1016/j.colsurfa.2021.127706 | |
dc.relation | Kayalvizhi K, Alhaji NMI, Saravanakkumar D, Mohamed SB, Kavi yarasu K, Ayeshamariam A, Al-Mohaimeed AM, AbdelGawwad
MR, Elshikh MS (2022) Adsorption of copper and nickel by using
sawdust chitosan nanocomposite beads A kinetic and thermody namic study. Environ Res 203:111814. https://doi.org/10.1016/j.
envres.2021.111814 | |
dc.relation | Li H, Xiong J, Xiao T, Long J, Wang Q, Li K, Liu X, Zhang G, Zhang
H (2019) Biochar derived from watermelon rinds as regenerable
adsorbent for efcient removal of thallium(I) from wastewater.
Process Saf Environ Prot 257–266. https://doi.org/10.1016/j.psep.
2019.04.031 | |
dc.relation | Li ZY, Azi F, Dong JJ, Liu LZ, Ge ZW, Dong MS (2021) Green and
efcient in-situ biosynthesis of antioxidant and antibacterial bac terial cellulose using wine pomace. Int J Biol Macromol. https://
doi.org/10.1016/j.ijbiomac.2021.11.049. | |
dc.relation | Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anasto poulos I (2019) A critical review of the estimation of the ther modynamic parameters on adsorption equilibria. Wrong use of
equilibrium constant in the Van’t Hoof equation for calculation
of thermodynamic parameters of adsorption. J Mol Liq 273:425–
434. https://doi.org/10.1016/j.molliq.2018.10.048 | |
dc.relation | Lütke SF, Igansi AV, Pegoraro L, Dotto GL, Pinto LAA, Cadaval Jr
TRS (2019) Preparation of activated carbon from black wattle
bark waste and its application for phenol adsorption. J Environ
Chem Eng 7:103396. https://doi.org/10.1016/j.jece:2019.103396 | |
dc.relation | Mulinari DR, Voorwald HJC, Ciof MO, Silva MLCP, Luz SM (2009)
Preparation and properties of HDPE/sugarcane bagasse cellulose
composites obtained for thermokinetic mixer. Carbohydr Polym
75:317–321. https://doi.org/10.1016/j.carbpol.2008.07.028 | |
dc.relation | Netto MS, Rossato DL, Jahn SL, Mallmann ES, Dotto GL, Foletto EL
2019 Preparation of a novel magnetic geopolymer/zero–valent
iron composite with remarkable adsorption performance towards
aqueous Acid Red 97. Chem Eng Commun 1048-1061. https://
doi.org/10.1080/00986445.2019.1635467 | |
dc.relation | Oncel MS, Muhcu A, Demirbas E, Kobya M (2013) A comparative
study of chemical precipitation and electrocoagulation for treat ment of coal acid drainage wastewater. J Environ Chem Eng
1:989–995. https://doi.org/10.1016/j.jece.2013.08.008 | |
dc.relation | Peng L, Bartzas G 2021 Heavy metals and metalloids: a serious threat
to environment and human health. Curr Opin Environ Sci Health
Editorial overview, 23, Article 100287. https://doi.org/10.1016/j.
coesh.2021.100287 | |
dc.relation | Peres EC, Cunha JM, Dortzbacher GF, Pavan FA, Lima EC, Foletto
EL, Dotto GL (2018) Treatment of leachates containing cobalt
by adsorption on Spirulina sp. and activated charcoal. J Environ
Chem Eng 6:677–685. https://doi.org/10.1016/j.jece.2017.12.060 | |
dc.relation | Piccin JS, Cadaval Jr., TRS, Pinto LAA, Dotto GL 2017 Adsorption
isotherms in liquid phase: experimental, modeling, and interpreta tions, Chapter 2, in: A. Bonilla-Petriciolet, D.I. Mendoza-Castillo,
H.E. Reynel-Ávila (Eds.), Adsorption processes for water treat ment and purifcation, Springer International Publishing. Adsorp tion. https://doi.org/10.1007/978-3-319-58136-1_2 | |
dc.relation | Pigatto RS, Franco DSP, Netto MS, Carissimi É, Oliveira LFS, Jahn
SL, Dotto GL 2020 An eco-friendly and low-cost strategy for
groundwater defuorination: adsorption of fuoride onto calcinated
sludge. J Environ Chem Eng Article 104546. https://doi.org/10.
1016/j.jece.2020.104546 | |
dc.relation | Rathi BS, Kumar PS 2021 Application of adsorption process for efec tive removal of emerging contaminants from water and wastewa ter. Environ Pollut 280, Article 116995. https://doi.org/10.1016/j.
envpol.2021.116995 | |
dc.relation | Rosa SMC, Nossol ABS, Nossol E, Zarbin AJG, Zamora PGP 2017
Non-synergistic UV-A photocatalytic degradation of estrogens
by nano-TiO2 supported on activated carbon. J Braz Chem Soc
28.https://doi.org/10.5935/0103-5053.20160201 | |
dc.relation | Rossato DL, Netto MS, Jahn SL, Mallman ES, Dotto GL, Foletto EL
(2020) Highly efcient adsorption performance of a novel mag netic geopolymer/Fe3O4 composite towards removal of aqueous
acid green 16 dye. J Environ Chem Eng 8:103804. https://doi.org/
10.1016/j.jece.2020.103804 | |
dc.relation | Roy A, Bharadvaja N (2021) Efcient removal of heavy metals from
artifcial wastewater using biochar. Environ Nanotechnol Monit
Manag. https://doi.org/10.1016/j.enmm.2021.100602 | |
dc.relation | Santos DCD, Adebayo MA, Lima EC, Pereira SFP, Cataluña R, Saucier
C, Thue PS, Machado FM (2015) Application of carbon com posite adsorbents prepared from cofee waste and clay for the
removal of reactive dyes from aqueous solutions. J Braz Chem
Soc 26:924–938. https://doi.org/10.5935/0103-5053.20150053 | |
dc.relation | Sardella F, Gimenez M, Navas C, Morandi C, Deiana C, Sapang K
(2015) Conversion of viticultural industry wastes into activated
carbons for removal of lead and cadmium. J Environ Chem Eng
3:253–260. https://doi.org/10.1016/j.jece.2014.06.026 | |
dc.relation | Shao L, Ren Z, Zhang G, Chen L (2012) Facile synthesis, charac terization of a MnFe 2O 4/activated carbon magnetic composite
and its efectiveness in tetracycline removal. Mater Chem Phys
135:16–24. https://doi.org/10.1016/j.matchemphys.2012.03.035 | |
dc.relation | Silva NF, Netto MS, Silva LFO, Mallmann ES, Lima EC, Ferrari V,
Dotto GL (2021) Composite carbon materials from winery com posted waste for the treatment of efuents contaminated with keto profen and 2-nitrophenol. J Environ Chem Eng 9:105421. https://
doi.org/10.1016/j.jece.2021.105421 | |
dc.relation | Sing KSW, Everett DH, Haul RAW, Moscou L, Pieroti RA, Rouquerol
J, Siemieniewska T (1985) Reporting physisorption data for gas/
solid systems with special reference to the determination of sur face area and porosity. Pure Appl Chem 57:603–619. https://doi.
org/10.1351/pac198557040603 | |
dc.relation | Streit AFM, Collazzo GC, Druzian SP, Verdi RS, Foletto EL, Oliveira
LFS, Dotto GL (2021) Adsorption of ibuprofen, ketoprofen,
and paracetamol onto activated carbon prepared from efuent
treatment plant sludge of the beverage industry. Chemosphere
262:128322. https://doi.org/10.1016/j.chemosphere.2020.128322 | |
dc.relation | Tang SH, Ahmad Zaini MA (2020) Development of activated car bon pellets using a facile low-cost binder for efective malachite
green dye removal. J Cleaner Prod 253:119970. https://doi.org/
10.1016/j.jclepro.2020.119970 | |
dc.relation | Tareq R, Akter N, Azam MDS 2019 Biochars and biochar composites:
low-cost adsorbents for environmental remediation. Biochar Bio mass Waste 169-209. https://doi.org/10.1016/B978-0-12-811729-
3.00010-8 | |
dc.relation | Vilvanathan S, Shanthakumar S 2015 Biosorption of Co(II) ions
from aqueous solution using Chrysanthemum indicum: kinet ics, equilibrium and thermodynamics, Process Saf Environ Prot
98-110. https://doi.org/10.1016/j.psep.2015.05.001 | |
dc.relation | Yang Q, Meng X, Zhao H, Cao C, Liu Y, Huisingh D (2021) Sustain able operations-oriented painting process optimisation in automo bile maintenance service. J Clean Prod 324:129191. https://doi.
org/10.1016/j.jclepro.2021.129191 | |
dc.relation | Zhou G, Liu C, Chu L, Tang Y, Luo S (2016) Rapid and efcient treat ment of wastewater with high-concentration heavy metals using a
new type of hydrogel-based adsorption process. Bioresour Tech nol 219:451–457. https://doi.org/10.1016/j.biortech.2016.07.038 | |
dc.relation | 11 | |
dc.relation | 1 | |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
dc.rights | © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 | |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.source | https://link.springer.com/article/10.1007/s11356-022-20488-4?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot | |
dc.subject | Grape pomace biochar | |
dc.subject | Efuent | |
dc.subject | Metal removal | |
dc.subject | Adsorption | |
dc.title | Polishing of painting process effluents through adsorption with biochar from winemaking residues | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |